1. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science 2010; 328:321-326
2. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78:547-581
3. Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972; 128: 617-630
4. Alexeyev MF. Is there more to aging than mitochondrial DNA and reactive oxygen species?. Febs J 2009; 276:5768-5787
5. Dowling DK, Simmons LW. Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci 2009; 276:1737-1745
6. Speakman JR, Selman C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 2011; 33:255-259
7. Lefer DJ, Granger DN. Oxidative stress and cardiac disease. Am J Med 2000; 109:315-323
8. Marttila R, Lorentz H, Rinne U. Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. Journal of the neurological sciences 1988; 86:321-331
9. Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Curr Neurol Neurosci Rep 2006; 6:37-46
10. Ceballos-Picot I, Nicole A, Briand P, Grimber G, Delacourte A, Defossez A, et al. Neuronal-specific expression of human copper-zinc superoxide dismutase gene in transgenic mice: animal model of gene dosage effects in Down’s syndrome. Brain Res 1991; 552:198-214
11. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004; 251:261-268
12. Tabner BJ, Turnbull S, El-Agnaf O, Allsop D. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr Top Med Chem 2001; 1:507-517
13. Halliwell B. Free radicals and antioxidants - quo vadis? Trends Pharmacol Sci 2011; 32:125-130
14. Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med 2005; 26:340-352
15. Miller AF. Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 2004; 8:162-168
16. Noori-Zadeh A, Mesbah-Namin SA, Tiraihi T, Rajabibazl M, Taheri T. Non-viral human proGDNF gene delivery to rat bone marrow stromal cells under ex vivo conditions. J Neurol Sci 2014; 339:81-86
17. Garcı́a Ro, Aguiar J, Alberti E, de la Cuétara K, Pavón N. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun 2004; 316: 753-754
18. Wu Y, Zheng Q, Xie Z, Wang Y, Hao J, Liu X. Expression of brain-derived neurotrophic factor and nerve growth factor in bone marrow mesenchymal stem cells and therapeutic effect in spinal cord injury. Chin J Exp Surg 2004; 22:139-141
19. Taghi GM, Maryam GK, Taghi L, Leili H, Leyla M. Characterization of in vitro cultured bone marrow and adipose tissue‐derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biol Int 2012; 36:1239-1249
20. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 1998; 150:40-44
21. Nakao N, Frodl EM, Widner H, Carlson E, Eggerding FA, Epstein CJ, et al. Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson’s disease. Nat Med 1995; 1:226-231
22. Browne SE, Bowling AC, Macgarvey U, Baik MJ, Berger SC, Muquit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997; 41:646-653
23. Ohtsuki T, Matsumoto M, Suzuki K, Taniguchi N Kamada T. Effect of transient forebrain ischemia on superoxide dismutases in gerbil hippocampus. Brain Res 1993; 620:305-309
24. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF Chan PH. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A 1991; 88:11158-11162
25. Rothstein JD, Bristol LA, Hosler B, Brown RH, Kuncl RW. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci U S A 1994; 91:4155-4159
26. Greenlund LJ, Deckwerth TL, Johnson Jr EM. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 1995; 14:303-315
27. Troy CM, Shelanski ML. Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. P Proc Natl Acad Sci U S A 1994; 91:6384-6387
28. Aminbakhsh A, Mancini J. Chronic antioxidant use and changes in endothelial dysfunction: a review of clinical investigations. Can J Cardiol 1999; 15:895-903
29. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 1995; 92:689-693
30. Deitch JS, Alexander GM, Bensinger A, Yang S, Jiang JT, Heiman-Patterson TD. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis. PLoS One 2014; 9: e99879
31. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 2011; 134:2627-2641
32. Lin D, Barnett M, Grauer L, Robben J, Jewell A, Takemoto L, et al. Expression of superoxide dismutase in whole lens prevents cataract formation. Mol Vis 2005; 11:853-858
33. Foresman EL, Miller FJ Jr. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction. Redox Biol 2013; 1:292-296.