1. Doshi D, Burkhoff D. Cardiovascular Simulation of Heart Failure Pathophysiology and Therapeutics. J Card Fail 2016; 22: 303-311.
2. Pietrangelo T, Di Filippo ES, Mancinelli R, Doria C, Rotini A, Fano-Illic G, et al. Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential. Front Physiol 2015; 6: 399.
3. Miller LE, McGinnis GR, Peters BA, Ballmann CG, Nanayakkara G, Amin R, et al. Involvement of the delta-opioid receptor in exercise-induced cardioprotection. Exp Physiol 2015; 100: 410-421.
4. Andersen K, Jonsdottir S, Sigurethsson AF, Sigurethsson SB. [The effect of physical training in chronic heart failure]. Laeknabladid 2006; 92: 759-764.
5. Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, et al. Effects of exercise training on cardiovascular adrenergic system. Front Physiol 2013; 4: 348.
6. Hu ST, Tang Y, Shen YF, Ao HH, Bai J, Wang YL, et al. Protective effect of oxymatrine on chronic rat heart failure. J Physiol Sci 2011; 61: 363-372.
7. Wisloff U, Brubakk AO. Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure. J Physiol 2001; 537: 607-611.
8. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 2012; 379: 895-904.
9. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res 2000; 46: 250-256.
10. Jugdutt BI, Amy RW. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 1986; 7: 91-102.
11. Jugdutt BI, Schwarz-Michorowski BL, Khan MI. Effect of long-term captopril therapy on left ventricular remodeling and function during healing of canine myocardial infarction. J Am Coll Cardiol 1992; 19: 713-721.
12. Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res 2010; 88: 40-50.
13. Roede JR, Jones DP. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environ Mol Mutagen 2010; 51: 380-390.
14. Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem 2001; 276: 30057-30063.
15. Farout L, Mary J, Vinh J, Szweda LI, Friguet B. Inactivation of the proteasome by 4-hydroxy-2-nonenal is site specific and dependant on 20S proteasome subtypes. Arch Biochem Biophys 2006; 453: 135-142.
16. Liu Q, Wang H, Singh A, Shou F. Expression and function of microRNA-497 in human osteosarcoma. Mol Med Rep 2016; 14: 439-445.
17. Hu X, Kong X, Wang C, Ma L, Zhao J, Wei J, et al. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell 2014; 26: 4763-4781.
18. Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC. Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol 2007; 34: 760-765.
19. Ferreira JC, Moreira JB, Campos JC, Pereira MG, Mattos KC, Coelho MA, et al. Angiotensin receptor blockade improves the net balance of cardiac Ca(2+) handling-related proteins in sympathetic hyperactivity-induced heart failure. Life Sci 2011; 88: 578-585.
20. Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE, et al. The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol 2008; 294: R26-32.
21. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 2005; 46: 2116-2124.
22. Alp PR, Newsholme EA, Zammit VA. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 1976; 154: 689-700.