1. World Health Organization. Global report on Tuberculosis 2016.
2. Fauci AS, Touchette NA, Folkers GK. Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases. Int J Risk Saf Med 2005; 17:157-167.
3. Morens D, Fauci A. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 2013; 9:e1003467.
4. World Health Organization. World health report 2017.
5. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, Van Soolingen D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 2010; 375:1830-1843.
6. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74:417-433.
7. Ali S, Siddiqui R, Ong S, Shah M, Anwar A, Heard P, et al. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl Microbiol Biotech 2016; 101:253-286.
8. Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control 2014; 46:412-429.
9. Carmel B. Invertebrate Medicine - Edited by GA Lewbart. Austral Vet J 2007; 85:324-324.
10. Vizoli J, Salzet M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci 2002; 23:494-496.
11. Lee S, Atkins H, Duce I, Khan NA. Cockroach and locust: physicians’ answer to infectious diseases. Int J Antimicrob Agent 2011; 37:279-280.
12. Lee S, Siddiqui R, Khan N. Animals living in polluted environments are potential source of antimicrobials against infectious agents. Pathogen Glob Health 2012; 106:218-223.
13. Johnson SR, Copello JA, Evans MS, Suarez AV. A biochemical characterization of the major peptides from the venom of the giant neotropical hunting ant Dinoponera australis. Toxicon 2010; 55:702-710.
14. Nie Y, Zeng X, Yang Y, Luo F, Luo X, Wu S, et al. A novel class of antimicrobial peptides from the scorpion Heterometrus spinifer. Peptides 2012; 38:389-394.
15. Jaramillo-Ramirez GI, Cárdenas-Henao H, González-Obando R, Rosero-Galindo CY. Genetic variability of five Periplaneta americana L. (Dyctioptera: Blattidae) populations in southwestern Colombia using the AFLP molecular marker technique. Neotrop Entomol 2010; 39:371-378.
16. Salzet M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 2001; 22:285-288.
17. Seraj UM, Hoq MI, Anwar MN, Chowdhury S. A 61kDa antibacterial protein isolated and purified from the hemolymph of the american cockroach Periplaneta americana. Pakistan J Biol Sci 2003; 6:715-720.
18. Latifi M, Alikhani M, Salehzadeh A, Nazari M, Bandani A, Zahirnia A. The antibacterial effect of American cockroach hemolymph on the nosocomial pathogenic bacteria. Avicenna J Clin Microbiol Infect 2015; 2: e23017.
19. Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. A Family of CSαβ defensins and defensin-like peptides from the migratory locust, Locusta migratoria and their expression dynamics during mycosis and nosemosis. PLoS One 2016; 11:e0161585.
20. Khan N, Osman K, Goldsworthy G. Lysates of Locusta migratoria brain exhibit potent broad-spectrum antibacterial activity. J Antimicrob Chemother 2008; 62:634-635.
21. Wang X, Wang G. Insights into antimicrobial peptides from spiders and scorpions. Protein Peptide Lett 2016; 23:707-721.
22. Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; e 958797.
23. Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, et al. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014; 92:166-178.
24. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon 2014; 88:115-137.
25. Zeng XC, Corzo G, Hahin R. Scorpion venom peptides without disulfide bridges. IUBMB life 2005; 57:13-21.
26. Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, et al. Spider-venom peptides as therapeutics. Toxins 2010; 2:2851-2871.
27. Wang Y, Wang L, Yang H, Xiao H, Farooq A, Liu Z, et al. The spider venom peptide Lycosin-II has potent antimicrobial activity against clinically isolated bacteria. Toxins 2016; 8:119.
28. Tan H, Ding X, Meng S, Liu C, Wang H, Xia L, et al. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis. Curr Mol Med 2013; 13:900-910.
29. Téné N, Bonnafé E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I, et al. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides 2016; 79:103-113.
30. Chen L, Zhang Q, Yuan X, Cao Y, Yuan Y, Yin H, et al. How charge distribution influences the function of membrane-active peptides: Lytic or cell-penetrating?. Int J Biochem Cell Biol 2017; 83:71-75.
31. Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 2005; 30:505-515.
32. Laverty G, Gorman SP, Gilmore BF. The potential of antimicrobial peptides as biocides. Int J Mol Sci 2011; 12:6566-6596.
33. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules 2012; 17:12276-12286.
34. Chernysh S, Gordya N, Suborova T. Insect antimicrobial peptide complexes prevent resistance development in bacteria. PLoS One 2015; 10:e0130788.
35. Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014; 98:5807-5822.
36. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Indust Microbiol Biotechnol 2016; 43:155-176.
37. Garcia F, Villegas E, Espino-Solis GP, Rodriguez A, Paniagua-Solis JF, Sandoval-Lopez G, et al. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J Antibiot 2013; 66:3-10.
38. Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 2012; 194:4494-4504.