1. Kim YS, Jung DH, Sohn E, Lee YM, Kim C-S, Kim JS. Extract of Cassiae semen attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in streptozotocin-induced diabetic rats. Phytomedicine 2014; 21:734-739.
2. Liu Y-W, Zhu X, Zhang L, Lu Q, Wang J-Y, Zhang F, et a. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Eur J Pharmacol 2013; 721:355-364.
3. Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Prac 2005; 67:3-21.
4. Liu K, Xu H, Lv G, Liu B, Lee MKK, Lu C, et al Loganin attenuates diabetic nephropathy in C57BL/6J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci 2015; 123:78-85.
5. Yan SF, Barile GR, D’Agati V, Du Yan S, Ramasamy R, Schmidt AM. The biology of RAGE and its ligands: uncovering mechanisms at the heart of diabetes and its complications. Curr Diab Rep 2007; 7:146-153.
6. Liu W-h, Hei Z-q, Nie H, Tang F-t, Huang H-q, Li X-j, et al Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase. Chin Med J 2008; 121:706-712.
7. Guglielmotto M, Aragno M, Tamagno E, Vercellinatto I, Visentin S, Medana C, et al AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiol Aging 2012; 33:196.e113-196.e127.
8. Yamabe N, Yokozawa T, Oya T, Kim M. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J Pharmacol Exp Ther 2006; 319:228-236.
9. Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog Polym Sci 2012; 37:1457-1475.
10. Gordon Still J. Development of oral insulin: Progress and current status. Diabetes Metab Res Rev 2002; 18:S29-S37.
11. Sharma G, Sharma AR, Nam J-S, Doss GPC, Lee S-S, Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13:74.
12. Mahjub R, Radmehr M, Dorkoosh FA, Ostad SN, Rafiee-Tehrani M. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Drug Dev Ind Pharm 2013; 40:1645-1659.
13. Stevanovic M, Uskokovic D. Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 2009; 5:1-14.
14. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces 2007; 59:24-34.
15. Fleming TH, Theilen T-M, Masania J, Wunderle M, Karimi J, Vittas S, et al Aging-dependent reduction in glyoxalase 1 delays wound healing. Gerontol 2013; 59:427-437.
16. Olson BJ, Markwell J. Assays for determination of protein concentration. Curr Protoc Protein Sci 2007:3.4. 1-3.4. 29.
17. Benzie IF, Szeto Y. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 1999; 47:633-636.
18. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38:1103-1111.
19. Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 1994; 233:380-385.
20. Hadwan MH, Abed HN. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 2016; 6:194-199.
21. Kalousova M, Skrha J, Zima T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res 2002; 51:597-604.
22. Yamamoto H, Watanabe T, Yamamoto Y, Yonekura H, Munesue S, Harashima A, et al RAGE in diabetic nephropathy. Curr Mol Med 2007; 7:752-757.
23. Burns N, Gold B. The Effect of 3-Methyladenine DNA Glycosylase–Mediated DNA Repair on the Induction of Toxicity and Diabetes by the β-Cell Toxicant Streptozotocin. Toxicol Sci 2006; 95:391-400.
24. Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 2015; 72:640-648.
25. Kreuter J. Nanoparticles—a historical perspective. Int J Pharm 2007; 331:1-10.
26. Kowapradit J, Opanasopit P, Ngawhiranpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, et al Methylated N-(4-N, N-dimethylaminobenzyl) chitosan, a novel chitosan derivative, enhances paracellular permeability across intestinal epithelial cells (Caco-2). AAPS PharmSciTech 2008; 9:1143-1152.
27. Mahjub R, Radmehr M, Dorkoosh FA, Ostad SN, Rafiee-Tehrani M. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Drug Dev Ind Pharm 2014; 40:1645-1659.
28. Sahu SK. Development and evaluation of insulin incorporated nanoparticles for oral administration. ISRN Nanotechnology 2013; 2013: Article ID 591751, 6 pages.
29. Samadder A, Das J, Das S, De A, Saha SK, Bhattacharyya SS, et al Poly (lactic-co-glycolic) acid loaded Insulin-loaded trimethyl chitosan nanoparticles has greater potentials of combating arsenic induced hyperglycemia in mice: some novel findings. Toxicol Appl Pharmacol 2013; 267:57-73.
30. Green M, Miller LL. Protein catabolism and protein synthesis in perfused livers of normal and alloxan-diabetic rats. J Bioll Chem 1960; 235:3202-3208.
31. Sugimoto Ki, Tsuruoka S, Fujimura A. Effect of enalapril on diabetic nephropathy in oletf rats: the role of an anti‐oxidative action in its protective properties. Clin Exp Pharmacol Physiol 2001; 28:826-830.
32. Kuhad A, Chopra K. Attenuation of diabetic nephropathy by tocotrienol: involvement of NFkB signaling pathway. Life Sci 2009; 84:296-301.
33. Modan M, Halkin H, Karasik A, Lusky A. Elevated serum uric acid—a facet of hyperinsulinaemia. Diabetologia 1987; 30:713-718.
34. Palsamy P, Subramanian S. Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomed Pharmacother 2008; 62:598-605.
35. Haidara MA, Mikhailidis DP, Rateb MA, Ahmed ZA, Yassin HZ, Ibrahim IM, et al Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced type 1 diabetes. J Diabetes Complications 2009; 23:130-136.
36. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107:1058-1070.
37. West IC. Radicals and oxidative stress in diabetes. Diabetic Medicine 2000; 17:171-180.
38. Manigrasso MB, Juranek J, Ramasamy R, Schmidt AM. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab 2014; 25:15-22.
39. Monnier VM, Sell DR, Nagaraj RH, Miyata S, Grandhee S, Odetti P, et al Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 1992; 41:36-41.
40. Ng AXH, Ton SH. Low-dose Insulin treatment ameliorate glucose metabolism in tpe 1 diabetic rats. J Diabetes Metab 2015; 07.
41. Yamagishi S-i, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 2010; 3:101-108.
42. Sano H, Higashi T, Matsumoto K, Melkko J, Jinnouchi Y, Ikeda K, et al Insulin enhances macrophage scavenger receptor-mediated endocytic uptake of advanced glycation end products. J Biol Chem1998; 273:8630-8637.