A glance at black cumin(Nigella sativa) and its active constituent, thymoquinone, in ischemia: a review

Document Type : Review Article


1 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Phamacogenosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): Black cumin (Nigella sativa) belonging to Ranunculaceae family has a long history of medicinal use in various folk and traditional systems of medicine, including Iranian traditional medicine (ITM). These valuable medicinal seeds have been used traditionally against a variety of diseases such as dyspepsia, diabetes, headache, influenza and asthma. In addition, several scientific investigations have reported the therapeutic properties of N. sativa and thymoquinone (TQ), one of the most important constituent of black cumin, for treatment of a large number of diseases, including ischemia. As there is no comprehensive review study about the anti-ischemic activity of black cumin and its mechanism of action, in the current study, we aimed to review the anti-ischemic activities of N. sativa and TQ in different organ-related disorders.
Materials and Methods: We searched the words N. sativa or black cumin and ischemia in the combination of related organs through available databases including Scopus, Web of science, and Google scholar.
Results: Several studies were found reporting the anti-ischemic activity of black cumin and its active constituent on different organs including brain, kidneys, heart, and liver. Black cumin exert its beneficial effects as an antioxidant, anti-inflammatory, anti-apoptosis, and anti-necrosis agent though inhibition of growth factors, biochemical and oxidative stress markers and regulating gene expression.
Conclusion: Thus, N. sativa could be a potential candidate for treatment of ischemia related disorders in key organs such as brain, liver, digestive system, kidney, and heart. To figure out the exact mechanism of action, further investigations are proposed in this regard.


Main Subjects

1. Dattner AM. From medical herbalism to phytotherapy in dermatology: back to the future. Dermatol Ther 2003; 16:106-13.
2. Fong HH. Integration of herbal medicine into modern medical practices: issues and prospects. Integr Cancer Ther 2002; 1:287-93.
3. Goreja W. Black seed: nature’s miracle remedy. Karger Publishers; 2003.
4. Schleicher P, Saleh M. Black seed cumin: the magical Egyptian herb for allergies, asthma, and immune disorders. Rochester, Vermont: Healing Arts Press; 1998.
5. Junemann M, Luetjohann S. Three great healing herbs.1st ed. Lotus Press (WI); 1998.
6. Pourbakhsh H, Taghiabadi E, Abnous K, Hariri AT, Hosseini SM, Hosseinzadeh H. Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iran J Basic Med sci 2014; 17:1020.
7. Ziaee T, Moharreri N, Hosseinzadeh H. Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. J Med Plant 2012; 2:16-42.
8. El-Dakhakhny M. Studies on the Egyptian Nigella sativa L. IV. Some pharmacological properties of the seeds’ active principle in comparison to its dihydro compound and its polymer. Arzneim-Forsch 1965; 15:1227.
9. Al-Rowais NA. Herbal medicine in the treatment of diabetes mellitus. Saudi Med
J 2002; 23:1327-31.
10. Kaleem M, Kirmani D, Asif M, Ahmed Q, Bano B. Biochemical effects of Nigella sativa L. seeds in diabetic rats. Indian J Exp Biol 2006; 44:745.
11. Meddah B, Ducroc R, Faouzi MEA, Eto B, Mahraoui L, Benhaddou-Andaloussi A, et al. Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats. J Ethnopharmacol 2009; 121:419-24.
12. Bamosa AO, Ali BA, al-Hawsawi ZA. The effect of thymoquinone on blood lipids in rats. Indian J Physiolo Pharmacol 2002; 46:195-201.
13. Uz E, Bayrak O, Kaya A, Bayrak R, Uz B, Turgut F, et al. Nigella sativa oil for prevention of chronic cyclosporine nephrotoxicity: an experimental model. Am J nephrol 2008; 28:517-22.
14. Kanter M, Coskun O, Uysal H. The anti-oxidative and anti-histaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch Toxicol 2006; 80:217-24.
15. Al-Ghamdi M. The anti-inflammatory, analgesic and anti-pyretic activity of Nigella sativa. J Ethnopharmacol 2001; 76:45-8.
16. Ait Mbarek L, Ait Mouse H, Elabbadi N, Bensalah M, Gamouh A, Aboufatima R, et al. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz J Med Biol Res 2007; 40:839-47.
17. Machmudah S, Shiramizu Y, Goto M, Sasaki M, Hirose T. Extraction of Nigella sativa L. using supercritical CO2: a study of antioxidant activity of the extract. Sep Sci Technol 2005; 40:1267-75.
18. Parvardeh S, Nassiri-Asl M, Mansouri M, Hosseinzadeh H. Study on the anti-convulsant activity of thymoquinone, the major constituent of Nigella sativa L. seeds, through intracerebroventricular injection. J Med Plant 2005; 2:45-52.
19. Hosseinzadeh H, Eskandari M, Ziaee T. Anti-tussive effect of thymoquinone, a constituent of Nigella sativa seeds, in guinea pigs. Pharmacologyonline 2008; 2:480-4.
20. Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H. Black seed (Nigella sativa) and its constituent thymoquinone as an anti-dote or a protective agent against natural or chemical toxicities. Iran J Pharm Res. 2017; 16:2-23.
21. Shahroudi MJ, Mehri S, Hosseinzadeh H. Anti-aging effect of Nigella sativa fixed oil on D-galactose-induced aging in mice. J pharmacopuncture. 2017; 20:29.
22. Hosseini SM, Taghiabadi E, Abnous K, Hariri AT, Pourbakhsh H, Hosseinzadeh H. Protective effect of thymoquinone, the active constituent of Nigella sativa fixed oil, against ethanol toxicity in rats. Iran J Basic Med Sci 2017; 20:927.
23. De Groot H, Rauen U, editors. Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc; 2007: Elsevier.
24. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 2005; 14:170-5.
25. Zweier JL, Talukder MH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006; 70:181-90.
26. Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH. From here to eternity-the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Cancer Ther 2008; 6:495.
27. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000; 14:323-8.
28. Liu X, Abd El-Aty AM, Shim J-H. Various Extraction and Analytical Techniques for Isolation and Identification of Secondary Metabolites from Nigella sativa Seeds. Mini Rev Med Chem 2011; 11: 947 – 955.
29. Kalidasu G, Reddy GS, Kumari SS, Kumari AL, Sivasankar A. Secondary volatiles and metabolites from Nigella sativa L. seed. Indian J Nat Prod Resour 2017; 8: 151-158.
30. Botnick I, Xue W, Bar E, Ibdah M, Schwartz A, Joel DM, Lev E, Fait A, Lewinsohn E. Distribution of Primary and Specialized Metabolites in Nigella sativa Seeds, a Spice with Vast Traditional and Historical Uses. Molecules 2012; 17: 10159-10177.
31. Forouzanfar F, Bazzaz BSF, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014; 17:929.
29. Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on Clinical Trials of Black Seed (Nigella sativa) and Its Active Constituent, Thymoquinone. J Pharmacopuncture 2017; 20:107-11.
30. Al‐Gaby A. Amino acid composition and biological effects of supplementing broad bean and corn proteins with Nigella sativa (black cumin) cake protein. Food/Nahrung 1998; 42:290-4.
31. Hosseinzadeh H, Parvardeh S. Anti-convulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 2004; 11:56-64.
32. Hosseinzadeh H, Parvardeh S, Nassiri-Asl M, Mansouri M-T. Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med Sci Monit 2005; 11:BR106-BR10.
33.Hosseinzadeh H, Fazly Bazzaz BS, Haghi MM. Antibacterial activity of total extracts and essential oil of Nigella sativa L. seeds in mice. Pharmacologyonline 2007; 2:429-35.
34. Amin B, Hosseinzadeh H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med 2016; 82:8-16.
35. Mollazadeh H, Afshari AR, Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis-Black cumin and cancer. J Pharmacopuncture 2017; 20:158-72.
36. Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol 2005; 5:1749-70.
37. Amin B, Taheri MMH, Hosseinzadeh H. Effects of intraperitoneal thymoquinone on chronic neuropathic pain in rats. Planta Med 2014; 80:1269-77.
38. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci 2014; 17:1007.
39. Razavi B, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37:1031-40.
40. Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F. Predicting Outcome From Hypoxic-lschemic Coma. Jama 1985;253:1420-6.
41. Katsura K-I, Kristián T, Smith M-L, Siesjö BK. Acidosis induced by hypercapnia exaggerates ischemic brain damage. J Cerebral Blood Flow & Metabolism. 1994;14:243-50.
42. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33.
43. Javidi S, Razavi BM, Hosseinzadeh H. A review of Neuropharmacology Effects of Nigella sativa and Its Main Component, Thymoquinone. Phytother Res 2016; 1219-29.
44. Houghton PJ, Zarka R, de las Heras B, Hoult J. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 1995; 61:33-6.
45. Hosseinzadeh H, Moghim FF, Mansouri SMT. Effect of Nigella sativa seed extracts on ischemia-reperfusion in rat skeletal muscle. Pharmacologyonline 2007; 2:326-35.
46. Al-Majed AA, Al-Omar FA, Nagi MN. Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. Eur J Pharmacol 2006; 543:40-7.
47. Hosseinzadeh H, Parvardeh S, Asl MN, Sadeghnia HR, Ziaee T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine 2007; 14:621-7.
48. Yaman İ, Balikci E. Protective effects of nigella sativa against gentamicin-induced nephrotoxicity in rats. Exp Toxicol Pathol 2010; 62:183-90.
49. Hobbenaghi R, Javanbakht J, Sadeghzadeh S, Kheradmand D, Abdi F, Jaberi M, et al. Neuroprotective effects of Nigella sativa extract on cell death in hippocampal neurons following experimental global cerebral ischemia-reperfusion injury in rats. J Neurol Sci 2014; 337:74-9.
50. Kalogeris T, Baines CP, Krenz M, and Korthuis RJ. Cell Biology of Ischemia/Reperfusion Injury. Int Rev Cell Mol Biol 2012; 298: 229-317.
51. Soleimannejad K, Rahmani A, Hatefi M, Khataminia M, Hafezi Ahmadi MR, K. A. Effects of Nigella sativa Extract on Markers of Cerebral Angiogenesis after Global Ischemia of Brain in Rats. J Stroke  Cerebrovasc Dis 2017; 26:1514-20.
52. Mousavi S, Tayarani-Najaran Z, Asghari M, Sadeghnia H. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 2010; 30:591-8.
53. Akhtar M, Maikiyo AM, Najmi AK, Khanam R, Mujeeb M, Aqil M. Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat. J Pharm Bioallied Sci 2013; 5:119.
54. Akhtar M, Maikiyo AM, Khanam R, Mujeeb M, Aqil M, Najmi AK. Ameliorating effects of two extracts of Nigella sativa in middle cerebral artery occluded rat. J Pharm Bioallied Sci 2012; 4:70.
55. Radad K, Hassanein K, Al-Shraim M, Moldzio R, WD. R. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 2014; 66:13-7.
56. Ahmadiasl N, Banaei S, Alihemmati A. Combination antioxidant effect of erythropoietin and melatonin on renal ischemia-reperfusion injury in rats. Iran J basic Med Sci 2013; 16:1209-16.
57. Almond P, Matas A, Gillingham K, Dunn D, Payne W, Gores P, et al., editors. Predictors of chronic rejection in renal transplant recipients. Transplant proc 1993; Elsevier.
58. Pirsch JD, Ploeg RJ, Gange S, D’Alessandro AM, Knechtle SJ, Sollinger HW, et al. Determinations of graft survival after renal transplantation. Transplantation 1996; 61:1581-6.
59. Paller MS. The cell biology of reperfusion injury in the kidney. J Investig Med: the official publication of the American Federation for Clinical Research. 1994; 42:632.
60. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011; 121:4210-21.
61. Greene EL, Paller MS. Xanthine oxidase produces O2-. in posthypoxic injury of renal epithelial cells. Am J Physiol-Renal Physiol 1992; 263:F251-F5.
62. Zager RA, Gmur D. Effects of xanthine oxidase inhibition on ischemic acute renal failure in the rat. Am J Physiol-Renal Physiol 1989; 257:F953-F8.
63. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, et al. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 2000; 58:658-73.
64. Chatterjee PK, Cuzzocrea S, Thiemermann C. Inhibitors of poly (ADP-ribose) synthetase protect rat proximal tubular cells against oxidant stress. Kidney Int 1999; 56:973-84.
65. Nafar M, Parvin M, Sadeghi P, Ghoraishian M, Soleimani M, Tabibi A, et al. Effects of stem cells and granulocyte colony stimulating factor on reperfusion injury. Iran J kidney Dis 2010; 4:207.
66. Radhakrishnan J, Kiryluk K. Acute renal failure outcomes in children and adults. Kidney Int 2006; 69:17-9.
67. Boozari M, Hosseinzadeh H. Natural medicines for acute renal failure: A review. Phytother Res 2017.
68. Hosseinzadeh H, Montahaei R. Protective effect of Nigella sativa L. extracts and thymoquinone, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. Pharmacologyonline 2007; 1:176-89.
69. Bayrak O, Bavbek N, Karatas OF, Bayrak R, Catal F, Cimentepe E, et al. Nigella sativa protects against ischaemia/reperfusion injury in rat kidneys. Nephrol Dial Transplant 2008; 23:2206-12.
70. Havakhah S, Sadeghnia HR, Mosa-Al-Reza Hajzadeh NM, Roshan SS, Hosseinzadeh H, Mohareri N, et al. Effect of Nigella sativa on ischemia-reperfusion induced rat kidney damage. Iran J Basic Med Sci 2014; 17:986.
71. Mungli P, Shetty MS, Tilak P, Anwar N. Total thiols: biomedical importance and their alteration in various disorders. Online J Health Allied Sci 2009; 8:1-9
72. Mousavi G, Sadeghnia HR, Ziaee T, Danaee A. Study on the effect of black cumin (Nigella sativa Linn.) on experimental renal ischemia-reperfusion injury in rats. Acta Cir Bras 2015; 30:542-550.
73. Yildiz F, Coban S, Terzi A, Savas M, Bitiren M, Celik H, et al. Protective effects of Nigella sativa against ischemia-reperfusion injury of kidneys. Ren Fail 2010; 32:126-31.
74. Bayrak O, Bavbek N, Karatas OF, Bayrak R, Catal F, Cimentepe E, et al. Nigella sativa protects against ischaemia/reperfusion injury in rat kidneys. Nephrol Dial Transplant 2008; 23:2206-12.
75. Mousavi G. Study on the effect of black cumin (Nigella sativa Linn.) on experimental renal ischemia-reperfusion injury in rats. Acta Cir Bras 2015; 30:542-50.
76. Awad AS, Kamel R, Sherief MAE. Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N‐1‐acetyl‐transferase gene expression induced by renal ischaemia–reperfusion in rats. J Pharm Pharmacol 2011; 63:1037-42.
77. FT Hammad LL. The effect of thymoquinone on the renal functions following ischemia-reperfusion injury in the rat. Int J Physiol 2016; 8:152–9.
78. Turhan Caskurlu MK, 2 Mustafa Erboga,3, Zeynep Fidanol Erboga MO, 4 Gokhan Atis1. Protective Effect of Nigella Sativa on Renal Reperfusion Injury in Rat. Iran J kidney 2016; 10:135-43.
79. Caldwell‐Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Kupffer cell activation and endothelial cell damage after storage of rat livers: effects of reperfusion. Hepatology 1991; 13:83-95.
80. Deschênes M, Belle SH, Krom RA, Zetterman RK, Lake JR. Early allograft dysfunction after liver transplantation: A Definition and Predictors of Outcome1. Transplantation 1998; 66:302-10.
81. Rezende-Neto JB, Moore EE, Masuno T, Moore PK, Johnson JL, Sheppard FR, et al. The abdominal compartment syndrome as a second insult during systemic neutrophil priming provokes multiple organ injury. Shock 2003; 20:303-8.
82. Selzner M, Clavien P-A, editors. Fatty liver in liver transplantation and surgery. Semin liver Dis 2001; 21:105-13.
83. Czaja MJ. Induction and regulation of hepatocyte apoptosis by oxidative stress. Anti-oxid Redox Signal 2002; 4:759-67.
84. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci 2003; 100:15924-9.
85. Selzner N, Rudiger H, Graf R, Clavien P-A. Protective strategies against ischemic injury of the liver. Gastroenterology 2003; 125:917-36.
86. Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg 2001; 181:160-6.
87. El-Abhar H, Abdallah D, Saleh S. Gastroprotective activity of Nigella sativa oil and its constituent, thymoquinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. J Ethnopharmacol 2003; 84:251-8.
88. Mollazadeh H, Hosseinzadeh H. The protective effect of Nigella sativa against liver injury: a review. Iran J Basic Med Sci 2014; 17:958.
89. El-Ghany R, Sharaf N, Kassem L, Mahran L, Heikal O. Thymoquinone triggers anti-apoptotic signaling targeting death ligand and apoptotic regulators in a model of hepatic ischemia reperfusion injury. Drug Discov Ther 2009; 3:296-306.
90. Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of anti-apoptotic gene products and enhancement of apoptosis. Mol Cancer Res 2008; 6:1059-70.
91. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia—reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci 2004; 49:1359-77.
92. Sizlan A, Guven A, Uysal B, Yanarates O, Atim A, Oztas E, et al. Proanthocyanidin protects intestine and remote organs against mesenteric ischemia/reperfusion injury. World J Surg 2009; 33(7):1384-91.
93. Al Salamah SM, El Keyali AY. Ileo-caecal volvulus post-cesarean section: a case report. Saudi J Gastroenterol 2000; 6:163.
94. Gul H, Yildiz O, Simsek A, Balkan M, Ersoz N, Cetiner S, et al. Pharmacologic characterization of contractile serotonergic receptors in human isolated mesenteric artery. J Cardiovasc Pharmacol 2003; 41:307-15.
95. Horie Y, Yamagishi Y, Kato S, Kajihara M, Kimura H, Ishii H. Low‐dose ethanol attenuates gut ischemia/reperfusion‐induced liver injury in rats via nitric oxide production. J Gastroenterol Hepatol 2003; 18:211-7.
96. Iglesias JL, LaNoue JL, Rogers TE, Inman L, Turnage RH. Physiologic basis of pulmonary edema during intestinal reperfusion. J Surg Res 1998; 80:156-63.
97. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol-cell Physiol 1996; 271:C1424-C37.
98. Daniel RAF, Cardoso VK, Góis Jr E, Parra RS, Garcia SB, Rocha JJRd, et al. Effect of hyperbaric oxygen therapy on the intestinal ischemia reperfusion injury. Acta Cir Bras 2011; 26:463-9.
99. Takahashi A, Tomomasa T, Kaneko H, Watanabe T, Tabata M, Morikawa H, et al. Intestinal motility in an in vivo rat model of intestinal ischemia–reperfusion with special reference to the effects of nitric oxide on the motility changes. J Pediatr Gastroenterol Nutr 2001; 33:283-8.
100. Horton JW, White DJ. Lipid peroxidation contributes to cardiac deficits after ischemia and reperfusion of the small bowel. Am J Physiol-Heart Circ Physiol 1993; 264:H1686-H92.
101. Shirasugi N, Wakabayashi G, Shimazu M, Oshima A, Shito M, Kawachi S, et al. Up-Regulation Of Oxygen-Derived Free Radicals By Interleukin-1 In Hepatic Ischemia/Reperfusion Injury1. Transplantation 1997; 64:1398-403.
102. Murphy BA, Martin A-M, Furney P, Elliott JA. Absence of a serum melatonin rhythm under acutely extended darkness in the horse. J Circadian Rhythms 2011; 9:3.
103. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312:159-63.
104. Kojima M, Iwakiri R, Wu B, Fujise T, Watanabe K, Lin T, et al. Effects of anti-oxidative agents on apoptosis induced by ischaemia‐reperfusion in rat intestinal mucosa. Aliment Pharmacol Ther 2003; 18:139-45.
105. Noda T, Iwakiri R, Fujimoto K, Matsuo S, Aw TY. Programmed cell death induced by ischemia-reperfusion in rat intestinal mucosa. Am J Physiol-Gastrointest Liver Physiol 1998; 274:G270-G6.
106. Ikeda H, Suzuki Y, Suzuki M, Koike M, Tamura J, Tong J, et al. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 1998; 42:530-7.
107. Soliman MM. Effects of aminoguanidine, a potent nitric oxide synthase inhibitor, on myocardial and organ structure in a rat model of hemorrhagic shock. J Emerg Trauma Shock 2014; 7:190.
108. Guven A, Tunc T, Topal T, Kul M, Korkmaz A, Gundogdu G, et al. α-Lipoic acid and ebselen prevent ischemia/reperfusion injury in the rat intestine. Surg Today 2008; 38:1029-35.
109. Koltuksuz U, Özen S, Uz E, Aydinç M, Karaman A, Gültek A, et al. Caffeic acid phenethyl ester prevents intestinal reperfusion injury in rats. J Pediatr Surg 1999; 34:1458-62.
110. Yildiz Y, Serter M, Ek RO, Ergin K, Cecen S, Demir EM, et al. Protective effects of caffeic acid phenethyl ester on intestinal ischemia-reperfusion injury. Dig Dis Sci 2009; 54:738-44.
111.    Al Mofleh IA, Alhaider AA, Mossa JS, Al-Sohaibani MO, Al-Yahya MA, Rafatullah S, et al. Gastroprotective effect of an aqueous suspension of black cumin Nigella sativa on necrotizing agents-induced gastric injury in experimental animals. Saudi J of Gastroenterology. 2008;14:128.
112. Tas U, Ayan M, Sogut E, Kuloglu T, Uysal M, Tanriverdi HI, et al. Protective effects of thymoquinone and melatonin on intestinal ischemia–reperfusion injury. Saudi J Gastroenterol: official J of the Saudi Gastroenterology Association 2015; 21:284.
113. Ikeda K, Negishi H, Yamori Y. Antioxidant nutrients and hypoxia/ischemia brain injury in rodents. Toxicol 2003; 189:55-61.
114. Ozyurt H, Ozyurt B, Koca K, Ozgocmen S. Caffeic acid phenethyl ester (CAPE) protects rat skeletal muscle against ischemia–reperfusion-induced oxidative stress. Vasc Pharmacol 2007; 47:108-12.
115. Hosseinzadeh H, Taiari S, Nassiri-Asl M. Effect of thymoquinone, a constituent of Nigella sativa L., on ischemia–reperfusion in rat skeletal muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 2012; 385:503-8.
116. Ascher E, Hanson JN, Cheng W, Hingorani A, Scheinman M. Glycine preserves function and decreases necrosis in skeletal muscle undergoing ischemia and reperfusion injury. Surgery 2001; 129:231-5.
117. Blaisdell FW. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Vascular 2002; 10:620-30.
118. Woodruff TM, Arumugam TV, Shiels IA, Reid RC, Fairlie DP, Taylor SM. Protective effects of a potent C5a receptor antagonist on experimental acute limb ischemia-reperfusion in rats. J Surg Res 2004; 116:81-90.
119. Hosseinzadeh H, Modaghegh MH, Saffari Z. Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid-Based Complement Alternat Med 2009; 6:343-50.
120. Erkut A, Cure MC, Kalkan Y, Balik MS, Guvercin Y, Yaprak E, et al. Protective effects of thymoquinone and alpha-tocopherol on the sciatic nerve and femoral muscle due to lower limb ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci 2016; 20:1192-202.
121. Gonca E, Kurt C. Cardioprotective effect of Thymoquinone: A constituent of Nigella sativa L., against myocardial ischemia/reperfusion injury and ventricular arrhythmias in anaesthetized rats. Pak J Pharm Sci 2015; 28:1267-73.
122. Tullio F, Angotti C, Perrelli M-G, Penna C, Pagliaro P. Redox balance and cardioprotection. Basic Res Cardiol 2013; 108:1-26.
123. Tappia PS, Hata T, Hozaima L, Sandhu MS, Panagia V, Dhalla NS. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Arch Biochem Biophys 2001; 387:85-92.
124. Agrawal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS, et al. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PloS One 2014; 9:111-212.
125. Goyal S, Arora S, Bhatt TK, Das P, Sharma A, Kumari S, et al. Modulation of PPAR-γ by telmisartan protects the heart against myocardial infarction in experimental diabetes. Chem-Biol interact 2010; 185:271-80.
126. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol 1985; 17:291-306.
127. Ojha S, Goyal S, Kumari S, Arya DS. Pyruvate attenuates cardiac dysfunction and oxidative stress in isoproterenol-induced cardiotoxicity. Exp Toxicol Pathol 2012; 64:393-9.
128. Moens A, Claeys M, Timmermans J, Vrints C. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 2005; 100:179-90.
129. Zhang T, Yang S, Du J. Protective effects of berberine on isoproterenol-induced acute myocardial ischemia in rats through regulating HMGB1-TLR4 axis. Evid-Based Complement Alternat Med 2014; 2014.
130. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T, editors. Myocardial ischemia reperfusion injury from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth 2012; 16:123-32.
131.    Ojha SK, Nandave M, Arora S, Narang R, Dinda AK, Arya DS. Chronic administration of Tribulus terrestris Linn extract improves cardiac function and attenuates myocardial infarction in rats. Int J Pharmacol 2008; 4:1-10.
132. Marczin N, El-Habashi N, Hoare GS, Bundy RE, Yacoub M. Antioxidants in myocardial ischemia–reperfusion injury: therapeutic potential and basic mechanisms. Arch Biochem Biophys 2003; 420:222-36.
133. Gonca E, Kurt Ç. Cardioprotective effect of Thymoquinone: A constituent of Nigella sativa L., against myocardial ischemia/reperfusion injury and ventricular arrhythmias in anaesthetized rats. Pak J Pharm Sci 2015; 28:1267-73.
134. El Tahir KE, Ashour MM, Al-Harbi MM. The cardiovascular actions of the volatile oil of the black seed (Nigella sativa) in rats: elucidation of the mechanism of action. Gen Pharmacol 1993; 24:1123-31.
135. Ghayur MN, Gilani AH, Janssen LJ. Intestinal, airway, and cardiovascular relaxant activities of thymoquinone. Evid-Based Complement Alternat Med 2012; 2012:305-319.
136. Atasever M, Z. B. Nigella sativa oil protects the rat ovary from oxidative injury due to ischemia-reperfusion. Med Sci Monit 2017; 23:5027-33.
137. Abdulhakeem A. Al-Majed  FAA-O, Mahmoud N. Nagi. Neuro protective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. Eur J Pharmacol 2006; 543:40–7.
138. Hosseinzadeh H PS, Nassiri Asl M, Sadeghnia HR, Ziaee T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine 2007; 14:621–7.
139. Ojha S, Azimullah S, Mohanraj R, Sharma C, Yasin J, Arya DS, et al. Thymoquinone protects against myocardial ischemic injury by mitigating oxidative stress and inflammation. Evid-Based Complement Alternat Med 2015;2015:1-12.