Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran

Document Type : Original Article


1 Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

4 Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

5 Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran

6 Student Research Committee, School of Medicine, Shahid Saddoughi University of Medical Sciences, Yazd, Iran


Objective(s): Resistance to carbapenems is the principal reason for the continuing utilization of colistin as a last resort choice for treating the infections resulted from multidrug carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates. The assessment of antimicrobial resistance pattern, the prevalence of carbapenem-resistance determinants, and molecular epidemiology of colistin-resistant isolates among CRPA strains were the aims of the present research.
Materials and Methods: The current cross-sectional research was conducted on 269 CRPA isolates collected from various clinical samples from 2013 to 2016. After performing identification tests, disk diffusion as well as MIC methods were used for testing sensitivity to the antibiotics. Modified Hodge Test (MHT) was utilized to produce carbapenemase. PCR technique identified beta-lactamase classes A, B, and D genes.
Results: In total, from 269 CRPA, five isolates (1.3%) were resistant to colistin. It was found that blaNDM-1, blaIMP-1, blaVIM-2, and blaOXA-10 genes were present in 40%, 40%, 20%, and 100% of colistin-resistant isolates, respectively. DLST type 25-11 is a significant cluster of colistin-resistant P. aeruginosa isolates.
Conclusion: The appearance of colistin-resistant isolates in CRPA carrying blaNDM-1 with multiple carbapenem-resistant genes shows the great problem in the treatment of P. aeruginosa infections.


Main Subjects

1. Vaez H, Moghim S, Nasr Esfahani B, Ghasemian Safaei H. Clonal relatedness among imipenem-resistant Pseudomonas aeruginosa isolated from ICU-hospitalized patients. Crit Care Res Pract 2015; 2015.
2.Mikucionyte G, Zamorano L, Vitkauskiene A, López-Causapé C, Juan C, Mulet X, et al. Nosocomial dis-semination of VIM-2-producing ST235 Pseudomonas aeruginosa in Lithuania. Eur J Clin Microbiol Infect Dis 2016; 35:195-200.
3.Leylabadlo HE, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol 2015; 7: 226.
4.Merie Queenan A, Bush K. carbapenemases: the versatile B-lactamases. Clin Microbiol Rev 2007; 20: 440-58.
5.Jovčić B, Lepšanović Z, Begović J, Filipić B, Kojić M. Two copies of blaNDM-1 gene are present in NDM-1 producing Pseudomonas aeruginosa isolates from Serbia. Antonie van Leeuwenhoek 2014; 105: 613-8.
6.Halaji M, Rezaei A, Zalipoor M, Faghri J. Investigation of class I, II, and III Integrons among Acinetobac-ter Baumannii isolates from hospitalized patients in Isfahan, Iran. Oman Med J 2018; 33: 37-42.
7.Wei W-J, Yang H-F, Ye Y, Li J-B. New Delhi metallo-β-lactamase-mediated carbapenem resistance: origin, diagnosis, treatment and public health concern. Chin Med J 2015; 128: 1969.
8.Lee J-Y, Na IY, Park YK, Ko KS. Genomic variations between colistin-susceptible and-resistant Pseudomo-nas aeruginosa clinical isolates and their effects on colistin resistance. J Antimicrob Chemother 2014; 69: 1248-56.
9.Falagas ME, Fragoulis KN, Kasiakou SK, Sermaidis GJ, Michalopoulos A. Nephrotoxicity of intravenous colistin: a prospective evaluation. Int J Antimicrob Agents 2005; 26: 504-7.
10.Dhariwal A, Tullu M. Colistin: Re-emergence of the 'forgotten' antimicrobial agent. J Postgrad Med 2013; 59: 208.
11.Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M. Emergence of colistin resistant Pseu-domonas aeruginosa at Tabriz hospitals, Iran. Iran J Microbiol 2016; 8: 62.
12.Basset P, Blanc D. Fast and simple epidemiological typing of Pseudomonas aeruginosa using the double-locus sequence typing (DLST) method. Eur J Clin Microbiol Infect Dis 2014; 33: 927-32
13.Cholley P, Stojanov M, Hocquet D, Thouverez M, Bertrand X, Blanc DS. Comparison of double-locus se-quence typing (DLST) and multilocus sequence typing (MLST) for the investigation of Pseudomonas aeruginosa populations. Diagn Microbiol Infect Dis 2015; 82: 274-7
14.Luce E. Koneman's color atlas and textbook of diagnostic microbiology. Plast Reconstr Surg 2010; 125: 414-5.
15.Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 2007; 70: 20-9.
16.Patel J, Cockerill F, Alder J, Bradford P, Eliopoulos G, Hardy D, et al. Performance standards for antimicro-bial susceptibility testing; twenty-fourth informational supplement. CLSI standards for antimicrobial sus-ceptibility testing 2014; 34: 1-226.
17.Amjad A, Mirza I, Abbasi S, Farwa U, Malik N, Zia F. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran J Microbiol 2011; 3: 189.
18.Qu T-t, Zhang J-l, Wang J, Tao J, Yu Y-s, Chen Y-g, et al. Evaluation of phenotypic tests for detection of Metallo-β-lactamase-producing Pseudomonas aeruginosa strains in China. J Clin Microbiol 2009; 47: 1136-42.
19.Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70:119-23.
20.Pappa O, Beloukas A, Vantarakis A, Mavridou A, Kefala A-M, Galanis A. Molecular characterization and phylogenetic analysis of Pseudomonas aeruginosa isolates recovered from Greek aquatic habitats imple-menting the Double-Locus Sequence Typing Scheme. Microb Ecol 2017; 74: 78-88.
21.Shokri D, Khorasgani MR, Fatemi SM, Soleimani-Delfan A. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. J Med Microbi-ol 2017; 66: 402-11.
22.Shanthi M, Sekar U, Kamalanathan A, Sekar B. Detection of New Delhi metallo beta lactamase-1 (NDM-1) carbapenemase in Pseudomonas aeruginosa in a single centre in southern India. Indian J Med Res 2014; 140: 546.
23.Mataseje L, Peirano G, Church D, Conly J, Mulvey M, Pitout J. Colistin-nonsusceptible Pseudomonas aeruginosa sequence type 654 with blaNDM-1 arrives in North America. Antimicrob Agents Chemother 2016; 60: 1794-800.
24.Saderi H, Owlia P. Detection of multidrug resistant (MDR) and extremely drug resistant (XDR) P. aeruginosa isolated from patients in Tehran, Iran. Iran J Pathol 2015; 10: 265.
25. Maroui I, Barguigua A, Aboulkacem A, Ouarrak K, Sbiti M, Louzi H, et al. First report of VIM-2 metallo-β-lactamases producing Pseudomonas aeruginosa isolates in Morocco. J Infect Cemother 2016; 22: 127-32.
26.Gill MM, Usman J, Kaleem F, Hassan A, Khalid A, Anjum R, et al. Frequency and antibiogram of multi-drug resistant Pseudomonas aeruginosa. J Coll Physicians Surg Pak 2011; 21: 531-4.
27.Bahar MA, Jamali S, Samadikuchaksaraei A. Imipenem-resistant Pseudomonas aeruginosa strains carry metallo-β-lactamase gene bla VIM in a level I Iranian burn hospital. Burns 2010; 36: 826-30.
28.Liu P-Y, Weng L-L, Tseng S-Y, Huang C-C, Cheng C-C, Mao Y-C, et al. Colistin resistance of Pseudomonas aeruginosa isolated from snakes in Taiwan. Can J Infect Dis Med Microbiol 2017; 2017.
29.Tissot F, Blanc D, Basset P, Zanetti G, Berger M, Que Y-A, et al. New genotyping method discovers sus-tained nosocomial Pseudomonas aeruginosa outbreak in an intensive care burn unit. J Hosp Infect 2016; 94: 2-7.
30.Blanc D, Magalhaes BG, Abdelbary M, Prod'hom G, Greub G, Wasserfallen J, et al. Hand soap contamina-tion by Pseudomonas aeruginosa in a tertiary care hospital: no evidence of impact on patients. J Hosp In-fect 2016; 93: 63-7. 
31.Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg In-fect Dis 2011; 17: 1791.
32.Fallah F, Borhan RS, Hashemi A. Detection of bla (IMP) and bla (VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. International . Int J Burns Trauma 2013; 3: 122.
33.Golshani Z, Sharifzadeh A. Prevalence of blaOxa10 type beta-lactamase gene in carbapenemase producing Pseudomonas aeruginosa strains isolated from oatients in Isfahan. Jundishapur J Microbiol 2013; 6.