Tanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine model of asthma

Document Type : Original Article


1 Department of Pediatric, Fujian Provincial Meternity and Children’s Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China

2 Department of Allergy, Fuzhou Children’s Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China


Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by ovalbumin (OVA).
Materials and Methods: Male BALB/c mice were used in the present study. The mice were sensitized by OVA intraperitoneal injection on days 0 and 14, and received aerosolized OVA challenge for 30 min daily on days 21-23Results: T. T. IIA (10 mg/kg twice daily) intraperitoneal injection was performed on days 18-23.
Results: Treatment of T. IIA reduced the levels of interleukin (IL)-4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF) (PConclusion: T. IIA inhibits OVA-induced airway inflammation and hyperresponsiveness. T. IIA is a potential therapeutic agent for asthma.


Main Subjects

1. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature 2008; 454:445-454.
2. Tao W, Li PS, Yang LQ, Ma YB. Effects of a Soluble Epoxide Hydrolase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury in Mice. PLoS One 2016; 11:e0160359.
3. Tao W, Li PS, Xu G, Luo Y, Shu YS, Tao YZ, et al. Soluble epoxide hydrolase plays a vital role in angiotensin II-induced lung injury in mice. Shock 2018;50:589-594.
4. Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease. biomolecules 2015; 5:1266-1283.
5. Cho HY, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 2006; 8:76-87.
6. Zhakeer Z, Hadeer M, Tuerxun Z, Tuerxun K. Bufalin inhibits the inflammatory effects in asthmatic mice through the suppression of nuclear factor-kappa B activity. Pharmacology 2017; 99:179-187.
7. Kelly HW, Nelson HS. Potential adverse effects of the inhaled corticosteroids. J Allergy Clin Immunol 2003; 112:469-478.
8. Salpeter SR, Buckley NS, Ormiston TM, Salpeter EE. Meta-analysis: effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann Intern Med 2006; 144:904-912.
9. McCracken JL, Veeranki SP, Ameredes BT, Calhoun WJ. Diagnosis and management of asthma in adults: A review. JAMA 2017; 318:279-290.
10. Liu F, Xuan NX, Ying SM, Li W, Chen ZH, Shen HH. Herbal medicines for asthmatic inflammation: from basic researches to clinical applications. Mediators Inflamm 2016; 2016:6943135.
11. Tao W, Li PS, Shen Z, Shu YS, Liu S. Effects of omega-3 fatty acid nutrition on mortality in septic patients: a meta-analysis of randomized controlled trials. BMC Anesthesiol 2016; 16:39.
12. Oztekin N, Baskan S, Evrim Kepekci S, Erim FB, Topcu G. Isolation and analysis of bioactive diterpenoids in Salvia species (Salvia chionantha and Salvia kronenburgiii) by micellar electrokinetic capillary chromatography. J Pharm Biomed Anal 2010; 51:439-442.
13. Zaker A, Asili J, Abrishamchi P, Tayarani-Najaran Z, Mousavi SH. Cytotoxic and apoptotic effects of root extract and tanshinones isolated from Perovskia abrotanoides Kar. Iran J Basic Med Sci 2017; 20:1377-1384.
14. Pan Y, Qian JX, Lu SQ, Chen JW, Zhao XD, Jiang Y, et al. Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats. Iran J Basic Med Sci 2017; 20:308-315.
15. Lu M, Luo Y, Hu P, Dou L, Huang S. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling. Iran J Basic Med Sci 2018; 21:83-88.
16. Yan SH, Zhao NW, Geng ZR, Shen JY, Liu FM, Yan D, et al. Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radic Biol Med 2018; 115:191-201.
17. Li J, Zheng Y, Li MX, Yang CW, Liu YF. Tanshinone IIA alleviates lipopolysaccharide-induced acute lung injury by downregulating TRPM7 and pro-inflammatory factors. J Cell Mol Med 2018; 22:646-654.
18. Chen PX, Zhang YL, Xu JW, Yu MH, Huang JH, Zhao L, et al. Sodium tanshinone IIA sulfonate stimulated Cl- secretion in mouse trachea. PLoS One 2017; 12:e0178226.
19. Kianmeher M, Ghorani V, Boskabady MH. Animal model of asthma, various methods and measured parameters: A methodological review. Iran J Allergy Asthma Immunol 2016; 15:445-465.
20. Price LC, Shao D, Meng C, Perros F, Garfield BE, Zhu J, et al. Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells. Respir Res 2015; 16:114.
21. Liu XM, Peyton KJ, Durante W. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1. Am J Physiol Heart Circ Physiol 2013; 304:H1634-1643.
22. Lu Y, Yu T, Liu J, Gu L. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One 2018; 13:e0196405.
23. Shakeri F, Soukhtanloo M, Boskabady MH. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma. Iran J Basic Med Sci 2017; 20:155-165.
24. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 1997; 17:3-9.
25. Lin C, Wang L, Wang H, Yang L, Guo H, Wang X. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J Cell Biochem 2013; 114:2061-2070.
26. Yang JX, Pan YY, Ge JH, Chen B, Mao W, Qiu YG, et al. Tanshinone II A attenuates TNF-alpha-induced expression of VCAM-1 and ICAM-1 in endothelial progenitor cells by blocking activation of NF-kappaB. Cell Physiol Biochem 2016; 40:195-206.
27. Wu WY, Wang WY, Ma YL, Yan H, Wang XB, Qin YL, et al. Sodium tanshinone IIA silate inhibits oxygen-glucose deprivation/recovery-induced cardiomyocyte apoptosis via suppression of the NF-kappaB/TNF-alpha pathway. Br J Pharmacol 2013; 169:1058-1071.
28. Wu X, Liu L, Xie H, Liao J, Zhou X, Wan J, et al. Tanshinone IIA prevents uric acid nephropathy in rats through NF-kappaB inhibition. Planta Med 2012; 78:866-873.
29. Li X, Wu Y, Zhang W, Gong J, Cheng Y. Pre-conditioning with tanshinone IIA attenuates the ischemia/reperfusion injury caused by liver grafts via regulation of HMGB1 in rat Kupffer cells. Biomed Pharmacother 2017; 89:1392-1400.
30. Shang T, Ran F, Qiao Q, Liu Z, Liu CJ. Tanshinone IIA attenuates elastase-induced AAA in rats via inhibition of MyD88-dependent TLR-4 signaling. Vasa 2014; 43:39-46.
31. Farne HA, Wilson A, Powell C, Bax L, Milan SJ. Anti-IL5 therapies for asthma. Cochrane Database Syst Rev 2017; 9:Cd010834.
32. Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW. A critical evaluation of anti-IL-13 and anti-IL-4 strategies in severe asthma. Int Arch Allergy Immunol 2016; 170:122-131.
33. Chambliss JM, Sur S, Tripple JW. Asthma versus chronic obstructive pulmonary disease, the Dutch versus British hypothesis, and role of interleukin-5. Curr Opin Allergy Clin Immunol 2018; 18:26-31.
34. Xia F, Deng C, Jiang Y, Qu Y, Deng J, Cai Z, et al. IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma. Autophagy 2018;14:450-464.
35. Ntontsi P, Papathanassiou E, Loukides S, Bakakos P, Hillas G. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs 2018; 27:179-186.
36. Yanagibashi T, Satoh M, Nagai Y, Koike M, Takatsu K. Allergic diseases: From bench to clinic - Contribution of the discovery of interleukin-5. Cytokine 2017; 98:59-70.
37. Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther 2018; 181:169-182.
38. Nesi RT, Barroso MV, Souza Muniz V, de Arantes AC, Martins MA, Brito Gitirana L, et al. Pharmacological modulation of reactive oxygen species (ROS) improves the airway hyperresponsiveness by shifting the Th1 response in allergic inflammation induced by ovalbumin. Free Radic Res 2017; 51:708-722.
39. Al-Sawaf O, Clarner T, Fragoulis A, Kan YW, Pufe T, Streetz K, et al. Nrf2 in health and disease: current and future clinical implications. Clin Sci (Lond) 2015; 129:989-999.
40. Dancheva V, Terziev L, Shopova V, Stavreva G. Effects of MnTnHex-2-PyP on lung antioxidant defence system in asthma mice model. Iran J Allergy Asthma Immunol 2012; 11:329-335.
41. Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med 2012; 7:226-232.
42. Ghosh S, Willard B, Comhair SA, Dibello P, Xu W, Shiva S, et al. Disulfide bond as a switch for copper-zinc superoxide dismutase activity in asthma. Antioxid Redox Signal 2013; 18:412-423.
43. Yang LL, Huang MS, Huang CC, Wang TH, Lin MC, Wu CC, et al. The association between adult asthma and superoxide dismutase and catalase gene activity. Int Arch Allergy Immunol 2011; 156:373-380.
44. Yang GL, Jia LQ, Wu J, Ma YX, Cao HM, Song N, et al. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver. Exp Ther Med 2017; 14:4639-4646.
45. Agarwal A, Nick HS. Renal response to tissue injury: lessons from heme oxygenase-1 Gene Ablation and expression. J Am Soc Nephrol 2000; 11:965-973.
46. Zhang Y, Zhang L, Wu J, Di C, Xia Z. Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response. J Biol Chem 2013; 288:34612-34626.
47. Xia ZW, Xu LQ, Zhong WW, Wei JJ, Li NL, Shao J, et al. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor- 1. Am J Pathol 2007; 171:1904-1914.
48. Jeon WY, Shin HK, Shin IS, Kim SK, Lee MY. Soshiho-tang water extract inhibits ovalbumin-induced airway inflammation via the regulation of heme oxygenase-1. BMC Complement Altern Med 2015; 15:329.
49. Lei Y, Wang K, Deng L, Chen Y, Nice EC, Huang C. Redox regulation of inflammation: old elements, a new story. Med Res Rev 2015; 35:306-340.
50. Fatani SH. Biomarkers of oxidative stress in acute and chronic bronchial asthma. J Asthma 2014; 51:578-584.
51. Celik M, Tuncer A, Soyer OU, Sackesen C, Tanju Besler H, Kalayci O. Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr Allergy Immunol 2012; 23:556-561.
52. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007; 47:89-116.
53.Yan SH, Zhao NW, Geng ZR, Shen JY, Liu FM, Yan D, et al. Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radic Biol Med 2017; 115:191-201.