Nanoparticle or conventional adjuvants: which one improves immune response against Brucellosis?

Document Type : Original Article

Authors

Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Objective(s): Brucellosis is a common infectious disease among animals and humans. While subunit vaccines could be used as an efficient strategy against pathogens, they usually seem to be less immunogenic than live or killed vaccines. However, the use of a suitable adjuvant accompanied by subunit vaccines can be a good alternative to enhance the immune response.
Materials and Methods: To find a proper adjuvant against Brucellosis, the immune response of induced mice by Aluminum Hydroxide (AH), Incomplete Freund (IFA), and Chitosan Nanoparticle (CS) adjuvants in individuals and in combination with CS were assessed.
Results: Immunization with CS stimulated higher interferon gamma (IFN-γ) immunity, while there were no significant differences between rOMP25 (IFA), rOMP25 (AH), rOMP25 (AH-CS) and rOMP25 (IFA-CS) recombinant proteins. Tumor necrosis factor alpha (TNF-α) analysis revealed there were no significant differences between immunized groups and the positive control group, except for the treatment formulated in single IFA. Furthermore, unlike IFN-γ, there was a reverse interleukin-4 (IL-4) immune response trend for treatments, as rOMP25 (CS) displayed the lowest response. rOMP25 (CS) induced higher titer of total antibody than the other ones. Although the recombinant proteins emulsified in different adjuvants induced similar titer of IgG1 antibody, the ones that were formulated in CS, IFA and IFA-CS showed a higher titer of IgG2a. The cell proliferation assay demonstrating the antigen-specific cell proliferative response could be promoted after immunization with CS.
Conclusion: CS whether single or in combination with IF adjuvants has potential to improve Th1-Th2 responses.

Keywords

Main Subjects


1. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 2015;15:51-57.
2. Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol 2004;82:488-496.
3. Ramon G. Sur l’augmentation anormale de l’antitoxine chez les chevaux producteurs de serum antidiphterique. Bull Soc Centr Med Vet 1925;101:227-234.
4. Apostólico JdS, Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: classification, modus operandi, and licensing. J Immunol Res 2016;1459394.
5. Pasquale AD, Preiss S, Silva FTD, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 2015;3:320-343.
6. Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-Analysis and advancement of brucellosis vaccinology. PloS one 2016;11:e0166582.
7. Douce G, Turcotte C, Cropley I, Roberts M, Pizza M, Domenghini M, et al. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci 1995;92:1644-1648.
8. Marx PA, Compans RW, Gettie A, Staas JK, Gilley RM, Mulligan MJ, et al. Protection against vaginal SIV transmission with microencapsulated vaccine. Science 1993;260:1323-1327.
9. McElrath MJ. Selection of potent immunological adjuvants for vaccine construction. Semin Cancer Biol 1995;375-385.
10. Singh M, O’hagan DT. Recent advances in vaccine adjuvants. Pharm Res 2002;19:715-728.
11. Glenny A, Pope C, Waddington H, Wallace U. The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 1926;29:31-40.
12. Vogel FR, Powell MF. A compendium of vaccine adjuvants and excipients. Pharm Biotechnol 1995; 141-228.
13. Morefield GL, Sokolovska A, Jiang D, HogenEsch H, Robinson JP, Hem SL. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine 2005;23:1588-95.
14. Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J. In interleukin-4 deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immun 1996;26:2062-2066.
15. Schirmbeck R, Melber K, Mertens T, Reimann J. Antibody and cytotoxic T-cell responses to soluble hepatitis B virus (HBV) S antigen in mice: implication for the pathogenesis of HBV-induced hepatitis. J Virol 1994;68:1418-1425.
16. Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis 1996;174:1168-1175.
17. Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives and future prospects. Trends Pharmacol sci 1993;14:174-8.
18. Goto N, Kato H, Maeyama J, Eto K, Yoshihara S. Studies on the toxicities of aluminium hydroxide and calcium phosphate as immunological adjuvants for vaccines. Vaccine 1993;11:914-918.
19. Freund J, Casals J, Hosmer EP. Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Exp Biol Med 1937;37:509-513.
20. Stuart-Harris C. Adjuvant influenza vaccines. Bull World Health Organ 1969;41:615-621.
21. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol 2004;82:497-505.
22. Freund J. The mode of action of immunologic adjuvants. Bibl Tuberc 1956;10:130-148.
23. Moreira LO, Smith AM, DeFreitas AA, Qualls JE, El Kasmi KC, Murray PJ. Modulation of adaptive immunity by different adjuvant–antigen combinations in mice lacking Nod2. Vaccine 2008;26:5808-5813.
24. Knorr D. Use of chitinous polymers in food: a challenge for food research and development. Food Technology (USA). 1984.
25. Kurita K. Chemistry and application of chitin and chitosan. Polym Degrad Stabil 1998;59:117-120.
26. dong Zhu B, qing Qie Y, ling Wang J, Zhang Y, zhong Wang Q, Xu Y, et al. Chitosan microspheres enhance the immunogenicity of an Ag85B-based fusion protein containing multiple T-cell epitopes of Mycobacterium tuberculosis. Eur J pharm biopharm 2007;66:318-326.
27. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. Immunological activity of chitin and its derivatives. Vaccine 1984;2:93-99.
28. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosic L, Calabró D, et al. Chitosan-mediated stimulation of macrophage function. Biomaterials 1994;15:1215-1220.
29. Seferian PG, Martinez ML. Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine 2000;19:661-668.
30. Shibata Y, Foster LA, Metzger WJ, Myrvik QN. Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect Immun 1997;65:1734-1741.
31. Suzuki K, Okawa Y, Hashimoto K, Suzuki S, Suzuki M. Protecting effect of chitin and chitosan on experimentally induced murine candidiasis. Microbiol immunol 1984;28:903-912.
32. Van der Lubben I, Verhoef J, Borchard G, Junginger H. Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001;52:139-144.
33. Villiers C, Chevallet M, Diemer H, Couderc R, Freitas H, Van Dorsselaer A, et al. From secretome analysis to immunology chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism. Mol Cell Proteomics 2009;8:1252-1264.
34. De Campos AM, Sánchez A, Alonso MaJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 2001;224:159-168.
35. Yousefi S, Tahmoorespur M, Sekhavati MH. Cloning, expression and molecular analysis of Iranian Brucella melitensis Omp25 gene for designing a subunit vaccine. Res Pharm Sci 2016;11:412-416.
36. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual: Cold Spring Harbor Laboratory Press; 1989.
37. Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH, Zarnani A-H. Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. Vaccine 2015;33:5532-5538.
38. Lambrecht BN, Kool M, Willart MA, Hammad H. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 2009;21:23-29.
39. Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 2009;9:287-293.
40. GIES WJ. Some objections to the use of alum baking-powder. JAMA 1911;57:816-821.
41. Tomljenovic L, A Shaw C. Aluminum vaccine adjuvants: are they safe? Curr Med Chem 2011;18:2630-2637.
42. Salk JE, Laurent AM. The use of adjuvants in studies on influenza immunization: I. Measurements in monkeys of the dimensions of antigenicity of virus-mineral oil emulsions. The J Exp Med 1952;95:429-447.
43. Savelkoul HF, Ferro VA, Strioga MM, Schijns VE. Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines 2015;3:148-171.
44. Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HB, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 2016;44:597-608.
45. Pasquali P, Adone R, Gasbarre LC, Pistoia C, Ciuchini F. Mouse cytokine profiles associated with Brucella abortus RB51 vaccination or B. abortus 2308 infection. Infect Immun 2001;69:6541-6544.
46. Jiang X, Baldwin CL. Effects of cytokines on intracellular growth of Brucella abortus. Infect Immun 1993;61:124-134.
47. Araya LN, Elzer PH, Rowe GE, Enright FM, Winter AJ. Temporal development of protective cell-mediated and humoral immunity in BALB/c mice infected with Brucella abortus. J Immunol 1989;143:3330-3337.
48. Zhan Y, Kelso A, Cheers C. Differential activation of Brucella-reactive CD4+ T cells by Brucella infection or immunization with antigenic extracts. Infect Immun 1995;63:969-975.
49. Scharf O, Agranovich I, Lee K, Eller NL, Levy L, Inman J, et al. Ontogeny of Th1 memory responses against a Brucella abortus conjugate. Infect Immun 2001;69:5417-5422.
50. Wen Z-S, Xu Y-L, Zou X-T, Xu Z-R. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 2011;9:1038-1055.
51. Abbassi-Daloii T, Yousefi S, Sekhavati MH, Tahmoorespur M. Impact of heat shock protein 60KD in combination with outer membrane proteins on immune response against Brucella melitensis. APMIS 2018;126:65-75.
52. Yousefi S, Abbassi-Daloii T, Sekhavati MH, Tahmoorespur M. Evaluation of immune responses induced by polymeric OMP25-BLS Brucella antigen. Microb Pathog 2018;115:50-56.
53. Abkar M, Lotfi AS, Amani J, Eskandari K, Ramandi MF, Salimian J, et al. Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commu 2015;39:217-228.
54. Abkar M, Fasihi-Ramandi M, Kooshki H, Sahebghadam Lotfi A. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 2017;12:8769-8778.
55. Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, et al. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine 2007;25:144-53.
56. Vasiliev YM. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev Vaccines 2015;14:37-53.
57. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33:492-503.
58. Mori A, Oleszycka E, Sharp FA, Coleman M, Ozasa Y, Singh M, et al. The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur J Immunol 2012;42:2709-2719.
59. Riteau N, Sher A. Chitosan: an adjuvant with an unanticipated STING. Immunity 2016;44:522-524.