Effect of troxerutin on apelin-13, apelin receptors (APJ), and ovarian histological changes in the offspring of high-fat diet fed rats

Document Type : Original Article


1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Iran

3 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran


Objective(s): Maternal high-fat diet (HFD) consumption has been linked to metabolic disorders and reproductive dysfunctions in offspring. Troxerutin (TRO) has anti-hyperlipidemic, anti-oxidant, and anti-inflammatory effects. This study examined the effects of TRO on apelin-13, its receptors mRNA and ovarian histological changes in the offspring of HFD fed rats.
Materials and Methods: Female Wistar rats were randomly divided into control diet (CD) or HFD groups and received these diets for eight weeks. After mating, dams were assigned into four subgroups: CD, CD + TRO, HFD, and HFD + TRO, and received their respective diets until the end of lactation. Troxerutin (150 mg/kg/day) was gavaged in the CD + TRO and HFD + TRO groups during pregnancy. On the postnatal day (PND) 21 all female offspring were separated and fed CD until PND 90. On PND 90 animals were sacrificed and ovarian tissue samples were collected for further evaluation.
Results: Results showed that HFD significantly decreased serum apelin-13 in the female offspring of the HFD dams, which was significantly reversed by TRO. Moreover, real-time polymerase chain reaction (PCR) analysis revealed that TRO treatment significantly decreased the ovarian mRNA expression of the apelin-13 receptor in the troxerutin-received offspring. Furthermore, histological examination revealed that TRO increased the number of atretic follicles in the ovaries of HFD+TRO offspring.
Conclusion: Maternal high fat feeding compromises ovarian health including follicular growth and development in the adult offspring and troxerutin treatment improved negative effects of maternal HFD on the apelin-13 level and ovarian development of offspring.


Main Subjects

1.    Po obalan A, Aucott L. Obesity among young adults in developing countries: A systematic overview. Curr Obes Rep 2016;5:2-13.
2.    Jacobs S, Teixeira DS, Guilherme C, da Rocha CF, Aranda BC, Reis AR et al. The impact of maternal consumption of cafeteria diet on reproductive function in the offspring. Physiology & behavior 2014;129:280-286.
3.    Macedo ICd, Medeiros LF, Oliveira Cd, Oliveira CMd, Rozisky JR, Scarabelot VL et al. Cafeteria diet plus chronic stress alter leptin serum level and specific adipose tissue weights in six weeks of treatment. Revista HCPA Porto Alegre 2012;38:189-196.
4.    Williams CB, Mackenzie KC, Gahagan S. The Effect of Maternal Obesity on the Offspring. Obstet Gynecol 2014;57:508-515.
5.    Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update 2014;21:249-261.
6.    Connor KL, Vickers MH, Beltrand J, Meaney MJ, Sloboda DM. Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function. J Physiol 2012;590:2167-2180.
7.    Reverchon M, Ramé C, Bertoldo M, Dupont J. Adipokines and the female reproductive tract. Int J Endocrinol 2014;2014: 232454.
8.    Chang C-Y, Tsai Y-C, Lee C-H, Chan T-F, Wang S-H, Su J-H. Lower serum apelin levels in women with polycystic ovary syndrome. Fertil Steril 2011;95:2520-2523. e2522.
9.    Gören K, Sağsöz N, Noyan V, Yücel A, Çağlayan O, Bostancı MS. Plasma apelin levels in patients with polycystic ovary syndrome. J Turk Ger Gynecol Assoc 2012;13:27-31.
10.    García-Díaz D, Campión J, Milagro FI, Martínez JA. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers. Mol Cell Biochem 2007;305:87-94.
11.    Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinol 2005;146:1764-1771.
12.    Sandal S, Tekin S, Seker FB, Beytur A, Vardi N, Colak C et al. The effects of intracerebroventricular infusion of apelin-13 on reproductive function in male rats. Neurosci Lett 2015;602:133-138.
13.    Valle A, Hoggard N, Adams A, Roca P, Speakman J. Chronic central administration of apelin‐13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. J Neuroendocrinol 2008;20:79-84.
14.    O’Carroll A-M, Selby TL, Palkovits M, Lolait SJ. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 2000;1492:72-80.
15.    Kleinz MJ, Davenport AP. Emerging roles of apelin in biology and medicine. Pharmacol Ther 2005;107:198-211.
16.    Masri B, Knibiehler B, Audigier Y. Apelin signalling: a promising pathway from cloning to pharmacology. Cell Signal 2005;17:415-426.
17.    Papadopoulos DP, Makris T, Perrea D, Zerva K, Tsioufis C, Faselis C et al. Apelin and relaxin plasma levels in young healthy offspring of patients with essential hypertension. J Clin Hypertens 2014;16:198-201.
18.    Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S et al. Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 2001;1538:162-171.
19.    Zhang Z-f, Fan S-h, Zheng Y-l, Lu J, Wu D-m, Shan Q et al. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J Agric Food Chem 2009;57:7731-7736.
20.    Farajdokht F, Amani M, Bavil FM, Alihemmati A, Mohaddes G, Babri S. Troxerutin protects hippocampal neurons against amyloid beta-induced oxidative stress and apoptosis. EXCLI Journal 2017;16:1081-1089.
21.    Zhang ZF, Zhang YQ, Fan SH, Zhuang J, Zheng YL, Lu J et al. Troxerutin protects against 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD(+)-depletion. Journal of hazardous materials 2015;283:98-109.
22.    Babri S, Mohaddes G, Feizi I, Mohammadnia A, Niapour A, Alihemmati A et al. Effect of troxerutin on synaptic plasticity of hippocampal dentate gyrus neurons in a β-amyloid model of Alzheimer,s disease: An electrophysiological study. Eur J Pharmacol 2014;732:19-25.
23.    Panat NA, Maurya DK, Ghaskadbi SS, Sandur SK. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem 2016;194:32-45.
24.    Vinothkumar R, Kumar RV, Sudha M, Viswanathan P, Balasubramanian T, Nalini N. Modulatory effect of troxerutin on biotransforming enzymes and preneoplasic lesions induced by 1, 2-dimethylhydrazine in rat colon carcinogenesis. Exp Mol Pathol 2014;96:15-26.
25.    Elangovan P, Jalaludeen AM, Ramakrishnan R, Pari L. Protective Effect of Troxerutin on Nickel-Induced Testicular Toxicity in Wistar Rats. J Environ Pathol Toxicol Oncol 2016;35:133-146.
26.    Bayandor P, Farajdokht F, Mohaddes G, Diba R, Hosseindoost M, Mehri K et al. The effect of troxerutin on anxiety-and depressive-like behaviours in the offspring of high-fat diet fed dams. Arch Physiol Biochem 2018:1-7.
27.    Hemayatkhah Jahromi V, Fatahi E, Nazari M, Jowhary H, Kargar H. Study on the effects of mobile phones waves on the number of ovarian follicles and level of FSH, LH, estrogen and progesterone hormones in adult rats. Cell Tissue Res 2010;1:27-34.
28.    Rezaie A, Roozbeh M, Najaf Zadeh Varzi H, Fatemi Tabatabaei SR, Pourmahdi-broojeni M. Effects of Tribulus Terrestris extract and Vitamin C on changes induced by cyclophosphamide in the rat ovary. Physiol Pharmacol 2013;17:194-203.
29.    Jeddi S, Zaman J, Zadeh-Vakili A, Zarkesh M, Ghasemi A. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats. Gene 2016;580:169-176.
30.    Sagae SC, Menezes EF, Bonfleur ML, Vanzela EC, Zacharias P, Lubaczeuski C et al. Early onset of obesity induces reproductive deficits in female rats. Physiology & behavior 2012;105:1104-1111.
31.    Ribot J, Rodríguez AM, Rodríguez E, Palou A. Adiponectin and resistin response in the onset of obesity in male and female rats. Obesity 2008;16:723-730.
32.    Masuyama H, Mitsui T, Eguchi T, Tamada S, Hiramatsu Y. The effects of paternal high-fat diet exposure on offspring metabolism with epigenetic changes in the mouse adiponectin and leptin gene promoters. Am J Physiol Endocrinol Metab 2016;311:E236-E245.
33.    Alipour FG, Ashoori MR, Pilehvar-Soltanahmadi Y, Zarghami N. An overview on biological functions and emerging therapeutic roles of apelin in diabetes mellitus. Diabetes Metab Syndr 2017;11:S919-S923.
34.    Kabaran S, Besler HT. Do fatty acids affect fetal programming? Health Popul Nutr 2015;33:14.
35.    Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 2008;8:437-445.
36.    Heinonen M, Purhonen A, Miettinen P, Pääkkönen M, Pirinen E, Alhava E et al. Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul Pept 2005;130:7-13.
37.    Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S et al. Molecular and functional characteristics of APJ tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 2000;275:21061-21067.
38.    Zhou Q, Cao J, Chen L. Apelin/APJ system: a novel therapeutic target for oxidative stress-related inflammatory diseases. Int J Mol Med 2016;37:1159-1169.
39.    Xin Q, Cheng B, Pan Y, Liu H, Chen J, Bai B. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides 2015;63:55-62.
40.    Koguchi W, Kobayashi N, Takeshima H, Ishikawa M, Sugiyama F, Ishimitsu T. Cardioprotective effect of apelin-13 on cardiac performance and remodeling in end-stage heart failure. Circulation J 2012;76:137-144.
41.    Yu S, Zhang Y, Li M, Xu H, Wang Q, Song J et al. Chemerin and apelin are positively correlated with inflammation in obese type 2 diabetic patients. Chin Med J 2012;125:3440-3444.
42.    Daviaud D, Boucher J, Gesta S, Dray C, Guigne C, Quilliot D et al. TNFα up-regulates apelin expression in human and mouse adipose tissue. FASEB J 2006;20:1528-1530.
43.    Zhang Z, Wang X, Zheng G, Shan Q, Lu J, Fan S et al. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice. Int J Mol Sci 2017;18:31.
44.    Pope GR, Tilve S, McArdle CA, Lolait SJ, O’Carroll A-M. Agonist-induced internalization and desensitization of the apelin receptor. Mol Cell Endocrinol 2016;437:108-119.
45.    Clarke K, Whitaker K, Reyes T. Diminished Metabolic Responses to Centrally‐Administered Apelin‐13 in Diet‐Induced Obese Rats Fed a High‐Fat Diet. J Neuroendocrinol 2009;21:83-89.
46.    Kurian JR, Terasawa E. Epigenetic control of gonadotropin releasing hormone neurons. Front Endocrinol 2013;4:61.
47.    Chan KA, Tsoulis MW, Sloboda DM. Early-life nutritional effects on the female reproductive system. J Endocrinol 2015;224:R45-R62.
48.    Williams L, Seki Y, Vuguin PM, Charron MJ. Animal models of in utero exposure to a high fat diet: A review. Biochim Biophys Acta 2014;1842:507-519.
49.    Cheong Y, Sadek KH, Bruce KD, Macklon N, Cagampang FR. Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring. Fertil Steril 2014;102:899-907.
50.    Wang N, Luo L-L, Xu J-J, Xu M-Y, Zhang X-M, Zhou X-L et al. Obesity accelerates ovarian follicle development and follicle loss in rats. Metabolism 2014;63:94-103.
51.    Bazzano M, Torelli C, Pustovrh M, Paz D, Elia E. Obesity induced by cafeteria diet disrupts fertility in the rat by affecting multiple ovarian targets. Reprod Biomed Online 2015;31:655-667.
52.    Wu Y, Zhang Z, Liao X, Wang Z. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development. Biochem Biophys Res Commun 2015;466:599-605.
53.    Tsoulis MW, Chang PE, Moore CJ, Chan KA, Gohir W, Petrik JJ et al. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring. Biol Reprod 2016;94:1-11.
54.    Xu M, Che L, Yang Z, Zhang P, Shi J, Li J et al. Effect of high fat dietary intake during maternal gestation on offspring ovarian health in a pig model. Nutrients 2016;8:1-18.
55.    Pope GR, Roberts EM, Lolait SJ, O’Carroll A-M. Central and peripheral apelin receptor distribution in the mouse: Species differences with rat. Peptides 2012;33:139-148.
56.    Roche J, Ramé C, Reverchon M, Mellouk N, Cornuau M, Guerif F et al. Apelin (APLN) and apelin receptor (APLNR) in human ovary: expression, signaling, and regulation of steroidogenesis in primary human luteinized granulosa cells. Biol Reprod 2016;95:104, 101-112.
57.    Badalzadeh R, Layeghzadeh N, Alihemmati A, Mohammadi M. Beneficial effect of troxerutin on diabetes-induced vascular damages in rat aorta: histopathological alterations and antioxidation mechanism. Int J Endocrinol Metab Disord 2015;13.
58.    Fan S-h, Zhang Z-f, Zheng Y-l, Lu J, Wu D-m, Shan Q et al. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation. Int Immunopharmacol 2009;9:91-96.
59.    Diba R, Mohaddes G, Mirzaie Bavil F, Farajdokht F, Bayandor P, Hosseindoost M et al. Protective effects of troxerutin on maternal high-fat diet-induced impairments of spatial memory and apelin in the male offspring. Iran J Basic Med Sci 2018;21:682-687.