1. Yang Y, Tang B, Guo JF. Parkinson’s disease and cognitive impairment. Parkinsons Dis 2016;2016:6734678.
2. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflamation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 2006; 6:261-281.
3. Chaudhuri KR1, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006; 5:235-245.
4. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999; 22:123-144.
5. Wang YQ, Tang BS, Yan XX, Chen ZH, Xu Q, Liu ZH, et al. A neurospychological profile in Parkinson’s disease with mild cognitive impairment and dementia in China. J Clin Neurosci 2015; 22:981-985.
6. Solari N, Bonito-Oliva , Fisone G, Brambilla R. Understanding cognitive deficits in Parkinson’s disease: lessons from preclinical animal models. Learn Mem 2013; 20:592-600.
7. Ray NJ, Strafella AP. The neurobiology and neural circuitry of cognitive changes in Parkinson’s disease revealed by functional neuroimaging. Mov Disord 2012; 27:1484-1492.
8. Castro-Hernández J, Adlard PA, Finkelstein DI. Pramipexole restores depressed transmission in the ventral hippocampus following-MPTP-lesion. Sci Rep 2017; 7:44426
9. Calabresi P, Castrioto A, Di Filippo M, Picconi B Calabresi P, Castrioto A, et al. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 2013; 12:811-821.
10. Mier D, Kirsch P, Meyer-Lindenberg A. Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 2010; 15:918-27.
11. Käenmäki M, Tammimäki A, Myöhänen T, Pakarinen K, Amberg C, Karayiorgou M, et al. Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J Neurochem 2010;114:1745-55.
12. Witte AV, Flöel A. Effects of COMT polymorphisms on brain function and behavior in health and disease. Brain Res Bull 2012; 88:418-28.
13. Gasparini M, Fabrizio E, Bonifati V, Meco G. Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J Neural Transm (Vienna) 1997; 104:887-894.
14. Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R, et al. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 2007; 32:1011-1020.
15. Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ. Catechol-O-methyltransferase inhibition improves set-shifting performance and elevated stimulated dopamine release in the rat prefrontal cortex. J Neurosci 2004; 24:5331-5335.
16. Laatikainen LM, Sharp T, Bannerman DM, PJ Harrison, Tunbridge EM. Modulation of hippocampla dopamine metabolism and hippocampal-dependent cognitive function by catechol-O-methyltransferase inhibition. J Psychopharmacol 2012; 26:1561–1568
17. Wang J, Bast T, Wang YC, Zhang WN. Hyppocampus and two-way active avoidance conditioniong : contrasting effects of cytotoxic lesion and temporary activation. Hippocampus 2015; 25:1517-1531.
18. Kulkarni SK, Bishoni M, Chopra K. In vivo microdialysis studies of strial level of neurotransmitters after haloperidol and chlorpromazine administration. Indian J Exp Biol 2009; 47:91-97.
19. Fanselow MS1, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010; 65:7-19.
20. Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol Learn Mem 2017; 146:21-30.
21. Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727.
22. Wei X, Ma T, Cheng Y, Huang CCY, Wang X, Lu J, et al. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict Biol 2018; 23:569-584.
23. Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24:845-58.
24. Rocchetti J, Isingrini E, Dal Bo G, Sagheby S, Menegaux A, Tronche F, et al. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry 2015; 77:513-525.
25. Khromova I, Voronina T, Kraineva VA, Zolotov N, Männistö PT. Effects of selective catechol-O-methyltransferase inhibitors on single-trial passive avoidance retention in male rats. Behav Brain Res 1997; 86:49-57.
26. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, et al. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 2003; 116:127-37.
27. Saavedra JM, Brownstein MJ, Palkovits M. Distribution of catechol-O-methyltransferase, histamine N-methyltransferase and monoamine oxidase in specific areas of the rat brain. Brain Res 1976; 118:152-156.
28. Kaakkola S, Gordin A, Männistö PT. General properties and clinical possibilities of new selective inhibitors of catechol O-methyltransferase. Gen Pharmacol 1994; 25:813-824.
29. Acquas E, Carboni E, de Ree RH, Da Prada M, Di Chiara G. Extracellular concentrations of dopamine and metabolites in the rat caudate after oral administration of a novel catechol-O-methyltransferase inhibitor Ro 40-7592. J Neurochem 1992; 59:326-30.
30. Borodovitsyna O, Flamini M, Chandler D. Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast 2017; 2017:6031478.
31. Hashimoto T, Baba S, Ikeda H, Oda Y, Hashimoto K, Shimizu I. Lack of dopamine supersensitivity in rats after chronic administration of blonanserin: Comparison with haloperidol. Eur J Pharmacol 2018; 830:26-32.
32. Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 2009; 32:267-87.
33. Yang ST, Shi Y, Wang Q, Peng JY, Li BM. Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol Brain 2014; 7:61.
34. Yang Y, Mailman RB. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze. Behav Brain Res 2018; 343:50-60.
35. Lapish CC, Ahn S, Evangelista LM, So K, Seamans JK, Phillips AG. Tolcapone enhances food-evoked dopamine efflux and executive memory processes mediated by the rat prefrontal cortex. Psychopharmacology (Berl) 2009; 202(1-3):521-530.
36. Detrait ER, Carr GV, Weinberger DR, Lamberty Y. Brain catechol-O-methyltransferase (COMT) inhibition by tolcapone counteracts recognition memory deficits in normal and chronic phencyclidine-treated rats and in COMT-Val transgenic mice. Behav Pharmacol 2016; 27:415-421.
37. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75:807-821.
38. Huotari M, Gogos JA, Karayiorgou M, Koponen O, Forsberg M, Raasmaja A, et al. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur J Neurosci 2002; 15:246-256.
39. Bezu M, Maliković J, Kristofova M, Engidawork E, Höger H, Lubec G, et al. Spatial working memory in male rats: Pre-experience and task dependent roles of dopamine D1- and D2-like receptors. Front Behav Neurosci 2017; 11:196.
40. Arnsten AF. Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci 1998; 2: 436–447.
41. Luciana M, Collins PF. Dopaminergic modulation of working memory for spatial but not object cues in normal humans. J Cogn Neurosci 1997; 9:330-347.