Rhopalurus junceus scorpion venom induces antitumor effect in vitro and in vivo against a murine mammary adenocarcinoma model

Document Type : Original Article


1 Research Department, Laboratories of Biopharmaceuticals and Chemistries Productions (LABIOFAM), Havana, Cuba

2 Microbiology Department, Tropical Medicine Institute “Pedro Kouri”, Havana, Cuba

3 Department of Pharmaceutical Science, Padova University, Italy

4 Investigation Department, Laboratory of Experimental pathology, Oncology and Radiobiology National Institute, Havana, Cuba

5 Laboratory of pathology, Tropical Medicine Institute “Pedro Kouri”, Havana, Cuba


Objective(s): In Cuba the endemic scorpion species Rhopalurus junceus has been used in traditional medicine for cancer treatment and related diseases. However there is no scientific evidence about its therapeutic potential for cancer treatment. The aim of the study was to determine the antitumor effect of scorpion venom against a murine mammary adenocarcinoma F3II.
Materials and Methods: The cytotoxic activity was determined by MTT assay with venom concentrations ranging from 0.1–1 mg/ml. Apoptosis was determined by RT-PCR and flow cytometry. Toxic effect in healthy animals and tumor growth kinetics in F3II bearing-mice were evaluated by using scorpion venom doses (0.2; 0.8; 3.2 mg/kg) after one and ten injections respectively by the intraperitoneal route.
Results: Scorpion venom induced a significant cytotoxic effect (P<0.05) in F3II cells in a concentration-dependent manner. The cell death event involves the apoptotic pathway due to up-regulation of pro-apoptotic genes (p53, bax), down-regulation of antiapoptotic gene (bcl-2), and 33% of Annexin V+/PI- cells at early apoptosis and 10.21% of Annexin V+/PI+ cells at late apoptosis. Scorpion venom induced significant inhibition of tumor progression (P<0.05) in F3II bearing-mice in a dose-dependent manner. The antitumor effect was confirmed due to dose-dependent reduction of Ki-67 and CD31 proteins present in tumor tissue.
Conclusion: Evidence indicates that scorpion venom can be an attractive natural product for deep investigation and developing a novel therapeutic agent for breast cancer treatment.


Main Subjects

1. Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin 2010; 60:277-300.
2. Morrison R, Schleicher S, Sun Y, Niermann K, Kim S, Spratt D, et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011; 2011:9418-9476.
3. Karikas G. Anticancer and chemopreventing natural products: some biochemical and therapeutic aspects. J BUON 2010; 15:627-638.
4. Ding J, Chua P, Bay B, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp Biol Med (Maywood) 2014; 239:387-393.
5. Cohen-Inbar O, Zaaroor M. Glioblastoma multiforme targeted therapy: The chlorotoxin story. J Clin Neurosci 2016; 33:52-58.
6. Tong-ngam P, Roytrakul S, Sritanaudomchai H. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis. Asian Pac J Cancer Prev 2015; 16:2807-2811.
7. Gao F, Li H, Chen Y, Yu X, Wang R, Chen X. Upregulation of PTEN involved in scorpion venom-induced apoptosis in a lymphoma cell line. Leuk Lymphoma 2009; 50:633-641.
8. Armas L. Fauna de la República de Cuba. Los ricinuleidos, esquizómidos y escorpiones. (Arachnida: Ricinulei, Schizomidae, Scorpiones): Academia de Ciencias; 1991.
9. García-Gómez B, Coronas F, Restano-Cassulini R, Rodríguez R, Possani L. Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus. Toxicon 2011; 58:18-27.
10. Díaz-García A, Morier-Díaz L, F-H Y. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines. J Venom Res 2013; 4:5–12.
11. Herrera Y, Heras N, Cardoso D. Adaptación a microplacas y validación de la técnica de Lowry. VacciMonitor 1999; 3:7-11.
12. Workman P, Aboagye E, Balkwill F, Balmain A, Bruder G, Chaplin D, et al. Guidelines for the welfare and use of animals in cancer research. Committee of the National Cancer Research Institute. Br J Cancer 2010; 102:1555-1557.
13. Frión-Herrera Y, Díaz-García A, Ruiz-Fuentes J, Rodríguez-Sánchez H, Sforcin J. Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway. J Pharm Pharmacol 2015; 67:1448-1456.
14. Chaisakul J, Hodgson W, Kuruppu S, Prasongsook N. Effects of animal venoms and toxins on hallmarks of cancer. J Cancer 2016; 7:1571-1578.
15. Akef H, Kotb N, Abo-Elmatty D, Salem S. Anti-proliferative Effects of Androctonus amoreuxi scorpion and cerastes cerastes snake venoms on human prostate cancer cells. J Cancer Prev 2017; 22:40-46.
16. D’Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from Tytius discrepans scorpion venom acting against SKBR3 breast cancer cell line. Toxicon 2010; 56:1495-1505.
17. Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan H. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem 2011; 248:173-181.
18. Pfeffer C, Singh A. Apoptosis: A target for anticancer therapy. Int J Mol Sci 2018; 19: pii: E448.
19. Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin Cancer Res 2018; 37:30.
20. Lugli E, Troiano L, Ferraresi R, Roat E, Prada N, Nasi M, et al. Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry A 2005; 68:28-35.
21. Kagan V, Fabisiak J, Shvedova A, Tyurina Y, Tyurin V, Schor N, et al. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 2000; 477:1-7.
22. Mariño G, Kroemer G. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res 2013; 23:1247-1248.
23. Díaz-García A, Ruiz-Fuentes JL, Rodríguez-Sánchez H, Fraga-Castro JA. Rhopalurus junceus scorpion venom induces apoptosis in the triple negative human breast cancer cell line MDA-MB-231. J Venom Res 2017; 8:9-13.
24. Das Gupta S, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni J, et al. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res 2007; 31:817-823.
25. Gupta S, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chem Biol Interact 2010; 183:293-303.
26. Tao M, Chen S, Zhang X, Zhou Q. Ki-67 labeling index is a predictive marker for a pathological complete response to neoadjuvant chemotherapy in breast cancer: A meta-analysis. Medicine (Baltimore) 2017; 96:e9384.
27. Lopes V, Jesus A, Souza L, Miyahara L, Guimarães D, Pontes H, et al. Ki-67 protein predicts survival in oral squamous carcinoma cells: an immunohistochemical study. Braz Oral Res 2017; 31:e66.
28. Prihantono P, Hatta M, Binekada C, Sampepajung D, Haryasena H, Nelwan B, et al. Ki-67 expression by immunohistochemistry and quantitative real-time polymerase chain reaction as predictor of clinical response to neoadjuvant chemotherapy in locally advanced breast cancer. J Oncol 2017; 2017:6209849.
29. Pisacane A, Picciotto F, Risio M. CD31 and CD34 expression as immunohistochemical markers of endothelial transdifferentiation in human cutaneous melanoma. Cell Oncol 2007; 29:59-66.
30. Miyata Y, Sakai H. Reconsideration of the clinical and histopathological significance of angiogenesis in prostate cancer: Usefulness and limitations of microvessel density measurement. Int J Urol 2015; 22:806-815.
31. Hvingel B, Lieng M, Roald B, A Ø. Vascular markers CD31, CD34, actin, VEGFB, and VEGFR2, are prognostic markers for malignant development in benign endometrial polyps. Open J Obster Gynecol 2012; 2:18-26.
32. Ortiz E, Gurrola G, Schwartz E, Possani L. Scorpion venom components as potential candidates for drug development. Toxicon 2015; 93:125-135.
33. Hmed B, Serria H, Mounir Z. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013:958797.
34. Catterall W, Cestèle S, Yarov-Yarovoy V, Yu F, Konoki K, Scheuer T. Voltage-gated ion channels and gating modifier toxins. Toxicon 2007; 49:124-141.
35. Rao V, Perez-Neut M, Kaja S, Gentile S. Voltage-gated ion channels in cancer cell proliferation. Cancers (Basel) 2015 7:849-875.
36. Prevarskaya N, Skryma R, Shub Y. Ion channels in cancer: Are cancer hallmarks oncochannelopathies? Physiol Rev 2018; 98:559-621.
37. Prevarskaya N, Skryma R, Shuba Y. Ion channels and the hallmarks of cancer. Trends Mol Med 2010; 16:107-121.
38. Aissaoui D, Mlayah-Bellalouna S, Jebali J, Abdelkafi-Koubaa Z, Souid S, Moslah W, et al. Functional role of Kv1.1 and Kv1.3 channels in the neoplastic progression steps of three cancer cell lines, elucidated by scorpion peptides. Int J Biol Macromol 2018; 111:1146-1155.
39. Pedron C, Andrade G, Sato R, Torres M, Cerchiaro G, Ribeiro A, et al. Anticancer activity of VmCT1 analogs against MCF-7 cells. Chem Biol Drug Des 2018; 91:588-596.
40. Sun N, Zhao L, Qiao W, Xing Y, Zhao J. BmK CT and 125I-BmK CT suppress the invasion of glioma cells in vitro via matrix metalloproteinase-2. Mol Med Rep 2017; 15:2703-2708.