Prevalence of β-lactamase genes, class 1 integrons, major virulence factors and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran

Document Type : Original Article

Authors

1 Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran

2 Prof Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Kerman Infection Diseases and Tropical Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran

4 Department of Microbiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran

Abstract

Objective(s): Pseudomonas aeruginosa is one of the most important nosocomial pathogens causing a high rate of mortality among hospitalized patients. Herein, we report the prevalence of antibiotic resistance genes, class 1 integrons, major virulence genes and clonal relationship among multidrug- resistant (MDR) P. aeruginosa, isolated from four referral hospitals in the southeast of Iran.
Materials and Methods: In this study, 208 isolates of P. aeruginosa were collected from four referral hospitals in southeast of Iran. Disk diffusion method was used to determine susceptibility to 13 antibacterial agents. AmpC was detected by phenotypic method and β-lactamase genes, virulence genes and class 1 integrons were detected by PCR. Clonal relationship of the isolates was determined by RAPD-PCR.
Results: All the isolates were susceptible to polymyxin-B and colistin. Overall, 40.4% of the isolates were MDR, among which resistance to third generation cephalosporins, aminoglycosides, and carbapenems was 47.5%, 32.3% and 40%, respectively. None of the isolates was positive for blaNDM-1 genes, while 84.5% and 4.8% were positive for the blaIMP-1 and blaVIM, metallo-β-lactamase genes, respectively. Incidence of class 1 integrons was 95% and AmpC was detected in 33% of the isolates. Prevalence of exoA, exoS, exoU, pilB and nan1 were 98.8%, 44%, 26%, 8.3% and 33.3%, respectively. RAPD profiles identified four large clusters consisting of 77 isolates, and two small clusters and three singletons.
Conclusion: The rate of MDR P. aeruginosa isolates was high in different hospitals in this region. High genetic similarity among MDR isolates suggests cross-acquisition of infection in the region.

Keywords

Main Subjects


1. Mirahsani M, Khorshidi A, Moniri R, Gilasi HR. Prevalence of class 1 Integron, resistance gene cassettes and antimicrobial susceptibility profiles among Isolates of Pseudomonas aeruginosa in Iran. Open J Med Microbiol 2016; 6:87-96.
2. Barrios CC, Ciancotti-Oliver L, Bautista-Rentero D, Adán-Tomás C, Zanón-Viguer V. A New treatment choice against multi-drug resistant Pseudomonas aeruginosa: doripenem. J Bacteriol Parasitol 2014; 5:199-203.
3. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34:634-640.
4. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74:417-433.
5. Hosseini SMJ, Naeini NS, Khaledi A, Daymad SF, Esmaeili D. Evaluate the relationship between class 1 integrons and drug resistance genes in clinical isolates of Pseudomonas aeruginosa. Open Microbiol J 2016; 10:188-196.
6. Khosravi AD, Motahar M, Montazeri EA. The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PloS one 2017; 12:e0183061.
7. Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their pathogenesis and prevalence in clinical settings and the environment. Infect Epidemiol Med 2016; 2:25-32.
8. Finck‐Barbançon V, Goranson J, Zhu L, Sawa T, Wiener‐Kronish JP, Fleiszig SM, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997; 25:547-557.
9. Wolska K, Kot B, Mioduszewska H, Sempruch C, Borkowska L, Rymuza K. Occurrence of the nan1 gene and adhesion of Pseudomonas aeruginosa isolates to human buccal epithelial cells. Biol Lett 2012; 49:59-64.
10. Nanvazadeh F, Khosravi AD, Zolfaghari MR, Parhizgari N. Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns 2013; 39:1409-1413.
11. Bekele T, Tesfaye A, Sewunet T, Waktola HD. Pseudomonas aeruginosa isolates and their antimicrobial susceptibility pattern among catheterized patients at Jimma University Teaching Hospital, Jimma, Ethiopia. BMC Res Notes 2015; 8:488-491.
12. Wayne P. Performance standards for antimicrobial susceptibility testing. Ninth informational supplement NCCLS document M100-S9 National Committee for Clinical Laboratory Standards 2008:120-126.
13. Ranjan S, Banashankari GS, Babu PRS. Evaluation of phenotypic tests and screening markers for detection of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa: A prospective study. Med J DY Patil University 2015; 8:599-605.
14. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol 2003; 41:3542-3547.
15. Lee K, Chong Y, Shin H, Kim Y, Yong D, Yum J. Modified hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7:88-91.
16. Mirsalehian A, Kalantar-Neyestanaki D, Nourijelyani K, Asadollahi K, Taherikalani M, Emaneini M, et al. Detection of AmpC-β-lactamases producing isolates among carbapenem resistant P. aeruginosa isolated from burn patient. Iran J Microbiol 2014; 6:306-310.
17. Finnan S, Morrissey JP, O’gara F, Boyd EF. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 2004; 42:5783-5792.
18. Xu J, Moore JE, Murphy PG, Millar BC, Elborn JS. Early detection of Pseudomonas aeruginosa–comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann Clin Microbiol Antimicrob 2004; 3:1-5.
19. Mahenthiralingam E, Campbell ME, Foster J, Lam JS, Speert DP. Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 1996; 34:1129-1135.
20. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010; 10:441-451.
21. Ambrogi V, Cavalié L, Mantion B, Ghiglia M-J, Cointault O, Dubois D, et al. Transmission of metallo-β-lactamase-producing Pseudomonas aeruginosa in a nephrology-transplant intensive care unit with potential link to the environment. J Hosp Infect 2016; 92:27-29.
22. Jung R, Fish D, Obritsch M, MacLaren R. Surveillance of multidrug-resistant Pseudomonas aeruginosa in an urban tertiary-care teaching hospital. J Hosp Infect 2004; 57:105-111.
23. Senthamarai S. Resistance pattern of Pseudomonas aeruginosa in a tertiary care hospital of Kanchipuram, Tamilnadu, India. J Clin Diagn Res 2014; 8:30-32.
24. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol 2013; 5:36-41.
25. Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Genetic characterization of Pseudomonas aeruginosa resistant isolates at the university teaching hospital in Iran. Adv Biomed Res 2015; 4:156-162.
26. Yousefi-Avarvand A, Khashei R, Ebrahim-Saraie HS, Emami A, Zomorodian K, Motamedifar M. The Frequency of exotoxin A and exoenzymes S and U genes among clinical isolates of Pseudomonas aeruginosa in Shiraz, Iran. Int J Mol Cell Med 2015; 4:167-173.
27. Ghanbarzadeh Corehtash Z, Ahmad Khorshidi FF, Akbari H, Aznaveh AM. Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol 2015; 8:e22345.
28. Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 2006; 32:343-347.
29. Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol 2014; 7:e16436.
30. Salimi F, Eftekhar F. Coexistence of AmpC and extended-spectrum β-lactamases in metallo-β-lactamase producing Pseudomonas aeruginosa burn isolates in Tehran. Jundishapur J Microbiol 2013; 6:e7178.
31. Shahcheraghi F, Nikbin VS, Feizabadi MM. Identification and genetic characterization of metallo-beta-lactamase-producing strains of Pseudomonas aeruginosa in Tehran, Iran. New Microbiol 2010; 33:243-248.
32. Ghamgosha M, Shahrekizahedani S, Kafilzadeh F, Bameri Z, Taheri RA, Farnoosh G. Metallo-beta-lactamase VIM-1, SPM-1, and IMP-1 genes among clinical Pseudomonas aeruginosa species isolated in Zahedan, Iran. Jundishapur J Microbiol 2015; 8:e17489.
33. Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, et al. Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica 2014; 2014:e245162.
34. Yousefi S, Farajnia S, Nahaei MR, Akhi MT, Ghotaslou R, Soroush MH, et al. Detection of metallo-β-lactamase–encoding genes among clinical isolates of Pseudomonas aeruginosa in northwest of Iran. Diagn Microbiol Infect Dis 2010; 68:322-325.
35. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 2014; 40:1556-1561.
36. Sarhangi M, Motamedifar M, Sarvari J. Dissemination of Pseudomonas aeruginosa producing blaIMP1, blaVIM2, blaSIM1, blaSPM1 in Shiraz, Iran. Jundishapur J Microbiol 2013; 6:e6920.
37. Akya A, Salimi A, Nomanpour B, Ahmadi K. Prevalence and clonal dissemination of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microbiol 2015; 8:e20980.
38. Strateva T, Mitov I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol 2011; 61:717-732.
39. Khan AA, Cerniglia CE. Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR. Appl Environ Microbiol 1994; 60:3739-3745.
40. Taheri ZM, Shahbazi N, Khoddami M. Genetic diversity of Peudomonas aeruginosa Strains isolated from hospitalized patients. Tanaffos 2008; 7:32-39.
41. Doosti M, Ramazani A, Garshasbi M. Identification and characterization of metallo-β-lactamases producing Pseudomonas aeruginosa clinical isolates in university hospital from Zanjan Province, Iran. Iran Biomed J 2013; 17:129-133.
42. Kali A, Srirangaraj S, Kumar S, Divya H, Kalyani A, Umadevi S. Detection of metallo-beta-lactamase producing Pseudomonas aeruginosa in intensive care units. Australas Med J 2013; 6:686–693.