Effect of let-7a overexpression on the differentiation of conjunctiva mesenchymal stem cells into photoreceptor-like cells

Document Type : Original Article

Authors

1 Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, End of Mahdavi Blvd, Shahrak-e Karmandan, 4513956111, Zanjan, Iran

2 Department of Medical Nanotechnology, Zanjan University of Medical Sciences, End of Mahdavi Blvd, Shahrak-e Karmandan, 4513956111, Zanjan, Iran

3 Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, End of Mahdavi Blvd, Shahrak-e Karmandan, 4513956111, Zanjan, Iran

4 Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Velenjak, 7th Floor, Bldg No 2 SBUMS, Arabi Ave, 19839-63113, Tehran, Iran

5 Department of Research and Development, Production and Research Complex, Pasteur Institute, No 69, Pasteur Ave, 1316943551, Tehran, Iran

Abstract

Objective(s): MicroRNAs (miRNAs) could regulate many cellular processes such as proliferation and differentiation. let-7a miRNA is one of the key regulators in the developmental transition of retinal progenitor cells into differentiated cells. Current evidence suggests that mesenchymal stem cells (MSCs) can isolate from various tissues such as bone marrow and conjunctiva. In this study, we investigated the effect of let-7a overexpression on induced differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells.
Materials and Methods: After isolation and characterization, CJMSCs were transduced with lentiviruses containing let-7a or empty vector. The effect of let-7a overexpression on expression of photoreceptor-specific markers was evaluated by quantitative real-time PCR (RT-qPCR) after 28 and 42 days of transduction.
Results: The relative expression of rhodopsin and recoverin genes was evaluated by RT-qPCR in let-7a overexpressing cells, control vector transduced cells and untransduced CJMSCs (control cells). Our results indicated that following overexpression of let-7a, after 28 and 42 days of transduction, significant up-regulation in the expression of recoverin (574.7 and 43.9 folds) and rhodopsin (3334.7 and 53.1 folds) were observed, respectively.
Conclusion: Our findings indicate that overexpression of let-7a microRNA can increase the expression of photoreceptor-specific genes in CJMSCs. Moreover, it is prospective that let-7a overexpression can use as an alternative protocol for the differentiation of mesenchymal stem cells into photoreceptors. It seems that the effect of let-7a on the differentiation of CJMSCs into photoreceptors is also time-dependent.

Keywords

Main Subjects


1. Georgantas RW, 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A. 2007;104:2750-2755.
2. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108:3646-3653.
3. Arora S, Rana R, Chhabra A, Jaiswal A, Rani V. miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics. 2013;288:77-87.
4. Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 2009;24:816-825.
5. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146-159.
6. Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2011;20:205-210.
7. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY). 2011;3:108-124.
8. Akerblom M, Jakobsson J. MicroRNAs as Neuronal Fate Determinants. Neuroscientist. 2014;20:235-242.
9. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol. 2008;10:987-993.
10. Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 2011;147:1066-1079.
11. Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene. 2006;384:51-61.
12. Greve TS, Judson RL, Blelloch R. microRNA control of mouse and human pluripotent stem cell behavior. Annu Rev Cell Dev Biol. 2013;29:213-239.
13. Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A. 2010;107:1876-1881.
14. Zhao C, Sun G, Ye P, Li S, Shi Y. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep. 2013;3:1329.
15. Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell. 2010;141:618-631.
16. Sundermeier TR, Palczewski K. The physiological impact of microRNA gene regulation in the retina. Cell Mol Life Sci. 2012;69:2739-2750.
17. La Torre A, Georgi S, Reh TA. Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proc Natl Acad Sci. 2013;110:E2362-E2370.
18. Nadri S, Yazdani S. Isolation and Expansion of Mesenchymal Stem Cells from Human Conjunctival Tissue. Curr Protoc Stem Cell Biol. 2015;33:1F 14 11-18.
19. Pan YW, Kurre P. Avoiding lentiviral transduction culture induced MSC senescence. J Cell Mol Med. 2009;13:1186-1187.
20. Treacy O, Ryan AE, Heinzl T, O’Flynn L, Cregg M, Wilk M, et al. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One. 2012;7:e42662.
21. Lin P, Lin Y, Lennon DP, Correa D, Schluchter M, Caplan AI. Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem CSells Transl Medicine. 2012;1:886-897.
22. Mohammadi-Yeganeh S, Paryan M, Samiee SM, Soleimani M, Arefian E, Azadmanesh K, et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep. 2013;40:3665-3674.
23. Fallah P, Amirizadeh N, Poopak B, Toogeh G, Arefian E, Kohram F, et al. Expression pattern of key microRNAs in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J lab Hematol. 2015;37:560-568.
24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25:402-408.
25. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone. 1990;11:181-188.
26. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res. 2002;20:1060-1069.
27. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101-109.
28. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928-1942.
29. Jankowski RJ, Deasy BM, Huard J. Muscle-derived stem cells. Gene Ther. 2002;9:642-647.
30. Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol. 2002;30:870-878.
31. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807-5812.
32. Nadri S, Kazemi B, Eeslaminejad MB, Yazdani S, Soleimani M. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol Biol Rep. 2013;40:3883-3890.
33. Nadri S, Nasehi F, Barati G. Effect of parameters on the quality of core-shell fibrous scaffold for retinal differentiation of conjunctiva mesenchymal stem cells. J Biomed Mater Res A. 2016.
34. Kicic A, Shen W-Y, Wilson AS, Constable IJ, Robertson T, Rakoczy PE. Differentiation of marrow stromal cells into photoreceptors in the rat eye. Journal Neurosci. 2003;23:7742-7749.
35. Tomita M, Mori T, Maruyama K, Zahir T, Ward M, Umezawa A, et al. A comparison of neural differentiation and retinal transplantation with bone marrow‐derived cells and retinal progenitor cells. Stem Cells. 2006;24:2270-2278.
36. Milam AH, Dacey DM, Dizhoor AM. Recoverin immunoreactivity in mammalian cone bipolar cells. Vis Neurosci. 1993;10:1-12.
37. Gu P, Yang J, Wang J, Young MJ, Klassen H. Sequential changes in the gene expression profile of murine retinal progenitor cells during the induction of differentiation. Mol Vis. 2009;15:2111-2122.
38. Tanioka H, Kawasaki S, Yamasaki K, Ang LP, Koizumi N, Nakamura T, et al. Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest Ophthalmol Vis Sci. 2006;47:3820-3827.
39. Nadri S, Soleimani M, Mobarra Z, Amini S. Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Communi. 2008;377:423-428.
40. Ahmad I, Tang L, Pham H. Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun. 2000;270:517-521.
41. Bateman A, Agrawal S, Birney E, Bruford EA, Bujnicki JM, Cochrane G, et al. RNAcentral: A vision for an international database of RNA sequences. RNA. 2011;17:1941-1946.
42. Lin P, Lin Y, Lennon DP, Correa D, Schluchter M, Caplan AI. Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem Cells Transl Med. 2012;1:886-897.