1. Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994; 12:1183–1194.
2. Kim MS, Morii T, Sun LX, Imoto K, Mori Y. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett 1993; 318:145–148.
3. Catterall WA, Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci 1992; 13:256–262.
4. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol 1977; 17:149–166.
5. Weiner DA. Calcium channel blockers. Med Clin North Am 1988; 72:83–115.
6. Coburn RA, Wierzba M, Suto MJ, Solo AJ, Triggle AM, Triggle DJ. 1,4-Dihydropyridine antagonist activities at the calcium channel: a quantitative structure-activity relationship approach. J Med Chem 1988; 31:2103–2107.
7. Dagnino L, Li-Kwong-Ken MC, Wolowyk MW, Wynn H, Triggle CR, Knaus EE. Synthesis and calcium channel antagonist activity of dialkyl 1,4-dihydro-2,6-dimethyl-4-(pyridinyl)- 3,5-pyridinedicarboxylates. J Med Chem 1986; 29:2524–2529.
8. Iqbal N, Akula MR, Vo D, Matowe WC, McEwen CA, Wolowyk MW, Knaus EE. Synthesis, rotamer orientation, and calcium channel modulation activities of alkyl and 2-phenethyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(3- or 6-substituted- 2-pyridyl)-5-pyridinecarboxylates. J Med Chem 1998; 41:1827–1837.
9. Vo D, Matowe WC, Ramesh M, Iqbal N, Wolowyk MW, Howlett SE, et al. Syntheses, calcium channel agonistantagonist modulation activities, and voltage-clamp studies of isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-pyridinylpyridine-5- carboxylate racemates and enantiomers. J Med Chem 1995; 38:2851–2859.
10. Hemmateenejad B, Miri R, Safarpour MA, Khoshneviszadeh M, Edraki N. Conformational analysis of some new derivatives of 4-nitroimidazolyl-1,4-dihydropyridine-based calcium channel blockers. J Mol Struct (Theochem) 2005; 717:139–152.
11. Shafiee A, Dehpour AR, Hadizadeh F, Azimi M. Synthesis and calcium channel antagonist activity of nifedipine analogues with methylsulfonyl- imidazolyl substituent. Pharm Acta Helv 1998; 73:75-79.
12. Hadizadeh F, Fatehi Hassanabad M, Baghban-Golabadi B, Mohammadi M. Synthesis and calcium channel antagonist activity of 2-dimethylamino / 4-benzylimidazolyl substituted dihydropyridines. Bol Chim Farm 2005; 14:1-8.
13. Hadizadeh F, Imenshahidi M, Mohammadpour F, Mihanparast P, Serif M. Synthesis and calcium channel antagonist activity of 4-[(halobenzyl) imidazolyl] dihydropyridines. Saudi Pharm J 2009; 17:170-176.
14. Iwanami M, Shibanuma T, Fujimoto M, Kawai R, Tamazawa K, Takenaka T, et al. Synthesis of new water-soluble dihydropyridine vasodilators. Chem Pharm Bull (Tokyo) 1979; 27:1426– 1440.
15. Hansch C, Kurup A, Garg R, Gao H. Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 2001; 101:619–672.
16. Hemmateenejad B, Miri R, Jafarpour M, Tabarzad M, Foroumadi A. Multiple linear regression and principal component analysis-based prediction of the anti-tuberculosis activity of some 2-aryi-1,3,4-thiadiazole derivatives. QSAR Comb Sci 2006; 25:56–66.
17. Riahi S, Pourbasheer E, Dinarvand R, Ganjali MR, Norouzi P. QSAR Study of 2-(1-Propylpiperidin-4-yl)-1H-Benzimidazole-4-Carboxamide as PARP Inhibitors for Treatment of Cancer. Chem Biol Drug Des 2008; 72:575–584.
18. Riahi S, Pourbasheer E, Ganjali MR, Norouzi P. Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: Concerns to supportvector machine. J Hazard Mater 2009; 166:853-859.
19. Riahi S, Pourbasheer E, Ganjali MR, Norouzi P. Support Vector Machine Based Quantitative Structure–Activity Relationship Study of Cholesteryl Ester Transfer Protein Inhibitors. Chem Biol Drug Des 2009; 73:558-571.
20. Depczynski U, Frost VJ, Molt K. Genetic algorithms applied to the selection of factors in principal component regression. Anal Chim Acta2000; 420:217-227.
21. Alsberg BK, Marchand-Geneste N, King RD. A new 3D molecular structure representation based on quantum topology with application to structure-property relationships. Chem Intell Lab Sys 2001; 54:75-91.
22. Jouan-Rimbaud D, Massart DL, Leardi R, De Noord OE. Anal Chem1995; 67:4295-4301.
23. Riahi S, Ganjali MR, Pourbasheer E, Divsar F, Norouzi P, Chaloosi M. Development and validation of a rapid chemometrics-assisted spectrophotometry and liquid chromatography methods for the simultaneous determination of the phenylalanine, tryptophan and tyrosine in the pharmaceutical products. Curr Pharm Anal 2008; 4:231–237.
24. Riahi S, Pourbasheer E, Ganjali MR, Norouzi P, Zeraatkar Moghaddam A. QSPR study of the distribution coefficient property for hydantoin and 5-arylidene derivatives. A genetic algorithm application for the variable selection in the MLR and PLS methods. J Chin Chem Soc 2008; 55:1086–1093.
25. Riahi S, Ganjali MR, Moghaddam AB, Pourbasheer E, Norouzi P. Development of a new combined chemometrics method, applied in the simultaneous voltammetric determination of cinnamic acid and 3, 4-dihydroxy benzoic acid. Curr Anal Chem 2009; 5:42–47.
26. Riahi S, Pourbasheer E, Dinarvand R, Ganjali MR, Norouzi P. Exploring QSARs for antiviral activity of 4-alkylamino-6-(2-hydroxyethyl)- 2-methylthiopyrimi-dines by support vector machine. Chem Biol Drug Des 2008; 72:205–216.
27. Stewart JPP. MOPAC 6.0: Quantum Chemistry Program Exchange QCPE. No. 455. Bloomington, IN: Indiana University; 1989.p. 250–260.
28. Katritzky A, Karelson, M, Petrukhin, R. http://www.codessa-pro.com.
29. Aires-De-Sousa J, Hemmer MC, Gasteiger J. Prediction of H-1 nmr chemical shifts using neural networks. Anal Chem 2002; 74: 80-90.
30. Holland H. Adaption in Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan; 1975.p. 342–375.
31. Cartwright HM. Applications of Artificial Intelligence in Chemistry. Oxford: Oxford University; 1993.p. 760–765.
32. Hunger J, Huttner G. Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks. J Comput Chem 1999; 20:455–471.
33. Waller CL, Bradley MP. Development and Validation of a Novel Variable Selection Technique with Application to Multidimensional Quantitative Structure-Activity Relationship Studies. J Chem Inf Comput Sci 1999; 39:345-355.
34. Leardi R, Lupianez Gonzalez A. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chem Intell Lab Syst 1998; 41:195-207.
35. OECD. . Guidance Document on the Validation of (Quantitative) Structure– Activity Relationships [(Q) SAR] Models. . Paris: Organisation for Economic Co-Operation and Development; 2007.p.256–278.
36. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, et al. ECVAM WORKSHOP REPORT Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA 2005; 33: 155-177.
37. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 2003; 111:1361–1375.
38. Agrawal VK, Khadikar PV. QSAR prediction of toxicity of nitrobenzenes. Bioorg Med Chem 2001; 9:3035–3040.