1. Nouri N, Talebi M, Palizban AA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1:1-11.
2. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15:541-555.
3. Männistö M, Reinisalo M, Ruponen M, Honkakoski P, Tammi M, Urtti A. Polyplex-mediated gene transfer and cell cycle: effect of carrier on cellular uptake and intracellular kinetics, and significance of glycosaminoglycans. J Gene Med 2007; 9:479-487.
4. Zuhorn IS, Kalicharan R, Hoekstra D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem 2002; 277:18021-18028.
5. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995; 92:7297-7301.
6. Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 2013; 10:215-228.
7. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005; 7:657-663.
8. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005; 4:581-593.
9. Parhamifar L, Larsen AK, Christy Hunter A. Andresen Thomas L, Moein Moghimi S. Polycation cytotoxicity: a delicate matter for nucleic acid therapy—focus on polyethylenimine. Soft Matter 2010; 61:4001-4009.
10. Taranejoo S, Liu J, Verma P, Hourigan K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J Appl Polym Sci 2015; 132:1-8.
11. Venkiteswaran S, Thomas T, Thomas TJ. Selectivity of polyethyleneimines on DNA nanoparticle preparation and gene transport. Chemistry Select 2016; 1:1144-1150.
12. Bronich T, Kabanov AV, Marky LA. A thermodynamic characterization of the interaction of a cationic copolymer with DNA J Phys Chem 2001; 105:6042-6050.
13. Rezvani Amin Z, Rahimizadeh M, Eshghi H, Dehshahri A, Ramezani M. The effect of cationic charge density change on transfection efficiency of polyethylenimine. Iran J Basic Med Sci 2013; 16:150-156.
14. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57:78-94.
15. Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 2012; 18:385-393.
16. Elouahabi A, Ruysschaert JM. Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 2005; 11:336-347.
17. Zhang D, Wang J, Xu D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Controlled Release 2016; 229:130-139.
18. Conlon JM, Kolodziejek J, Nowotny N, Leprince J, Vaudry H, Coquet L, et al. Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii. Toxicon 2007; 50:746-756.
19. Asoodeh A, Mashreghi M, Rezazade Bazaz M, Darroudi M, Kazemi Oskuee R. Antioxidant properties of brevinin-2R peptide conjugated with cerium oxide nanoparticle. Sjimu 2016; 23:142-151.
20. Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, et al. Brevinin‐2R1 semi‐selectively kills cancer cells by a distinct mechanism, which involves the lysosomal‐mitochondrial death pathway. J Cell Mol Med 2008; 12:1005-1022.
21. Zohrab F, Askarian S, Jalili A, Kazemi Oskuee R. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily. Int J Pept Res Ther 2018; 1:1-10.
22. Jacoby D, Fraefel C, Breakefield X. Hybrid vectors: a new generation of virus-based vectors designed to control the cellular fate of delivered genes. Gene Ther. 1997; 4:1281-1283
23. Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy. Biotechnol Adv. 2013; 31:208-223.
24. Schmidt-Wolf GD, Schmidt-Wolf IG. Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 2003; 9:67-72.
25. Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM. Polymer‐coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med 2018; 20:e3011.
26. Meyer M, Philipp A, Kazemi Oskuee R, Schmidt C, Wagner E. Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc 2008; 130:3272-3273.
27. Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, et al. Brannon-Peppas, PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A 2009; 91:263-276.
28. Hashemi M, Parhiz B, Hatefi A, Ramezani M. Modified polyethyleneimine with histidine–lysine short peptides as gene carrier. Cancer Gene Ther 2011; 18:12.
29. Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet 2002; 41:901-911.
30. Wu P, Chen H, Jin R, Weng T, Ho JK, You C, et al. Non-viral gene delivery systems for tissue repair and regeneration. J Transl Med 2018; 16:29.
31. Alsaggar M, Liu D. Physical methods for gene transfer. Adv Genet 2015; 89:1-24.
32. Lindgren M, Hällbrink M, Prochiantz A, Langel Ü. Cell-penetrating peptides. Trends Pharmacol Sci 2000; 21:99-103.
33. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60:247-266.
34. El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. The Aaps J 2009; 11:13-22.
35. Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 1999; 16:1273-1279.
36. Florea BI, Meaney C. Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. Aaps Pharmsci 2002; 4:1-11.
37. Gholami L, Sadeghnia HR, Darroudi M, Kazemi Oskuee R. Evaluation of genotoxicity and cytotoxicity induced by different molecular weights of polyethylenimine/DNA nanoparticles. Turk J Biol 2014; 38:380-387.
38. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 2005; 11:990-995.
39. Putnam D, Gentry CA, Pack DW, Langer R. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci U S A 2001; 98:1200-1205.
40. Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, Wagner E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 2001; 3:362-372.
41. Dai Z, Gjetting T, Mattebjerg MA, Wu C, Andresen TL. Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials 2011; 32:8626-8634.
42. Mao Z, Zhou X, Gao C. Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomater. Sci 2013; 1:896-911.
43. Gestin M, Dowaidar M, Langel Ü. Uptake mechanism of cell-penetrating peptides. Adv Exp Med Biol. 2017; 1030:255-264.