Looking for immortality: Review of phytotherapy for stem cell senescence

Document Type : Review Article


1 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is “Aging”. Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different pathologies. Stem cell senescence also has been investigated in different diseases or as drug adverse effects.
Materials and Methods: We searched databases such as Embase, Pubmed and Web of Science with keywords “stem cell”, “progenitor cell”, “satellite”, “senescence” and excluded keywords “cancer”, “tumor”, “malignancy” and “carcinoma” without time limitation until May 2019. Among them we chose 52 articles that have investigated protective effects of natural agents (extracts or molecules) against cellular senescence in different kind of adult stem cells.
Results: Most of these studies were in endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells and few were about other kinds of stem cells. Most studied agents were resveratrol and ginseng which are also commercially available as supplement. Most protective molecular targets were telomerase and anti-oxidant enzymes to preserve genome integrity and reduce senescence-inducing signals.
Conclusion: Due to the safe and long history of herbal usage in clinic, phytotherapy can be used for preventing stem cell senescence and their related complication. Resveratrol and ginseng can be the first choice for this aim due to their protective mechanisms in various kinds of stem cells and their long term clinical usage.


1. Mohammadi E, Mehri S, Badie Bostan H, Hosseinzadeh H. Protective effect of crocin against d-galactose-induced aging in mice. Avicenna J Phytomed 2018; 8:14-23.
2. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest 2004; 113:160-168.
3. Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: Neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 2008; 363:123-137.
4. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011; 192:547-556.
5. Drummond-Barbosa D. Stem cells, their niches and the systemic environment: An aging network. Genetics 2008; 180:1787-1797.
6. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447:725-729.
7. Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 2014; 512:198-202.
8. Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL. Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 2007; 6:2371-2376.
9. Sotiropoulou PA, Candi A, Mascre G, De Clercq S, Youssef KK, Lapouge G, et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat Cell Biol 2010; 12:572-582.
10. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, et al. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 2015; 520:549-552.
11. Yun MH. Changes in regenerative capacity through lifespan. Int J Mol Sci 2015; 16:25392-25432.
12. Signer RAJ, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013; 12:152-165.
13. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of nf-kappab signaling in the induction of senescence-associated secretory phenotype (sasp). Cell Signal 2012; 24:835-845.
14. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat Med 2015; 21:1424-1435.
15. Biran A, Krizhanovsky V. Senescent cells talk frankly with their neighbors. Cell Cycle 2015; 14:2181-2182.
16. Ovadya Y, Krizhanovsky V. Senescent cell death brings hopes to life. Cell Cycle 2017; 16:9-10.
17. Ding A-J, Zheng S-Q, Huang X-B, Xing T-K, Wu G-S, Sun H-Y, et al. Current perspective in the discovery of anti-aging agents from natural products. Nat Prod Bioprospect 2017; 7:335-404.
18. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: Methods and techniques. Transplantation 2003; 76:1123-1130.
19. Schwartz SM, Benditt EP. Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci U S A 1976; 73:651-653.
20. Scheubel RJ, Zorn H, Silber RE, Kuss O, Morawietz H, Holtz J, et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2003; 42:2073-2080.
21. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 2005; 45:1441-1448.
22. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348:593-600.
23. Tobler K, Freudenthaler A, Baumgartner-Parzer SM, Wolzt M, Ludvik B, Nansalmaa E, et al. Reduction of both number and proliferative activity of human endothelial progenitor cells in obesity. Int J Obes (Lond) 2010; 34:687-700.
24. Kobayashi K, Imanishi T, Akasaka T. Endothelial progenitor cell differentiation and senescence in an angiotensin ii-infusion rat model. Hypertens Res 2006; 29:449-455.
25. Leenen FHH. Update on angiotensin ii: New endocrine connections between the brain, adrenal glands and the cardiovascular system.  2017; 6:R131-145.
26. Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvath T, et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: Relation to endothelial dysfunction. Hypertension 2010; 55:1389-1397.
27. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annual review of pharmacology and toxicology 2013; 53:401-426.
28. Parzonko A, Czerwinska ME, Kiss AK, Naruszewicz M. Oleuropein and oleacein may restore biological functions of endothelial progenitor cells impaired by angiotensin ii via activation of nrf2/heme oxygenase-1 pathway. Phytomedicine 2013; 20:1088-1094.
29. Parzonko A, Oswit A, Bazylko A, Naruszewicz M. Anthocyans-rich aronia melanocarpa extract possesses ability to protect endothelial progenitor cells against angiotensin ii induced dysfunction. Phytomedicine 2015; 22:1238-1246.
30. Shi AW, Gu N, Liu XM, Wang X, Peng YZ. Ginsenoside rg1 enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro. J Int Med Res 2011; 39:1306-1318.
31. Im W, Chung JY, Bhan J, Lim J, Lee ST, Chu K, et al. Sun ginseng protects endothelial progenitor cells from senescence associated apoptosis. J Ginseng Res 2012; 36:78-85.
32. Dong XX, Hui ZJ, Xiang WX, Rong ZF, Jian S, Zhu CJ. Ginkgo biloba extract reduces endothelial progenitor-cell senescence through augmentation of telomerase activity. J Cardiovasc Pharmacol 2007; 49:111-115.
33. Zhu J, Wang X, Shang Y, Xie X, Zhang F, Chen J, et al. Puerarin reduces endothelial progenitor cells senescence through augmentation of telomerase activity. Vascul Pharmacol 2008; 49:106-110.
34. Akaberi M, Hosseinzadeh H. Grapes (vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016; 30:540-556.
35. Nassiri-Asl M, Hosseinzadeh H. Review of the pharmacological effects of VSitis vinifera (grape) and its bioactive constituents: An update. Phytother Res 2016; 30:1392-1403.
36. Shen X, Wang M, Bi X, Zhang J, Wen S, Fu G, et al. Resveratrol prevents endothelial progenitor cells from senescence and reduces the oxidative reaction via ppargamma/ho1 pathways. Mol Med Rep 2016; 14:5528-5534.
37. Xia L, Wang XX, Hu XS, Guo XG, Shang YP, Chen HJ, et al. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by akt-dependent mechanisms. Br J Pharmacol 2008; 155:387-394.
38. Wang XB, Zhu L, Huang J, Yin YG, Kong XQ, Rong QF, et al. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin Med J (Engl) 2011; 124:4310-4315.
39. Xu S, Cai Y, Wei Y. Mtor signaling from cellular senescence to organismal aging. Aging Dis 2014; 5:263-273.
40. Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, et al. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS One 2012; 7:e37162.
41. Wang X, Ma S, Meng N, Yao N, Zhang K, Li Q, et al. Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of huc-mscs. Mol Cells 2016; 39:418-425.
42. Yoon DS, Choi Y, Choi SM, Park KH, Lee JW. Different effects of resveratrol on early and late passage mesenchymal stem cells through beta-catenin regulation. Biochem Biophys Res Commun 2015; 467:1026-1032.
43. Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol 2004; 31:407-413.
44. Lai P, Liu Y. Angelica sinensis polysaccharides inhibit endothelial progenitor cell senescence through the reduction of oxidative stress and activation of the akt/htert pathway. Pharm Biol 2015; 53:1842-1849.
45. Lucchesi D, Russo R, Gabriele M, Longo V, Del Prato S, Penno G, et al. Grain and bean lysates improve function of endothelial progenitor cells from human peripheral blood: Involvement of the endogenous antioxidant defenses. PLoS One 2014; 9:e109298.
46. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, et al. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 2007; 56:1559-1568.
47. Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T. Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J 2006; 70:1076-1081.
48. Tormos AM, Talens-Visconti R, Nebreda AR, Sastre J. P38 mapk: A dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 2013; 47:905-916.
49. Liu JT, Chen HY, Chen WC, Man KM, Chen YH. Red yeast rice protects circulating bone marrow-derived proangiogenic cells against high-glucose-induced senescence and oxidative stress: The role of heme oxygenase-1. Oxid Med Cell Longev 2017; 2017.
50. Parzonko A, Naruszewicz M. Silymarin inhibits endothelial progenitor cells’ senescence and protects against the antiproliferative activity of rapamycin: Preliminary study. J Cardiovasc Pharmacol 2010; 56:610-618.
51. Dogan F, Biray Avci C. Correlation between telomerase and mtor pathway in cancer stem cells. Gene 2018; 641:235-239.
52. Shin DH, Lee SJ, Kim JS, Ryu JH, Kim JS. Synergistic effect of immunoliposomal gemcitabine and bevacizumab in glioblastoma stem cell-targeted therapy. J Biomed Nanotechnol 2015; 11:1989-2002.
53. Deschenes-Simard X, Kottakis F, Meloche S, Ferbeyre G. Erks in cancer: Friends or foes? Cancer Res 2014; 74:412-419.
54. Feng D, Kondo Y, Ishigami A, Kuramoto M, Machida T, Maruyama N. Senescence marker protein-30 as a novel antiaging molecule. Ann N Y Acad Sci 2004; 1019:360-364.
55. Kondo Y, Ishigami A. Involvement of senescence marker protein-30 in glucose metabolism disorder and non-alcoholic fatty liver disease. Geriatr Gerontol Int 2016; 16 Suppl 1:4-16.
56. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 2018; 32:985-995.
57. You J, Sun J, Ma T, Yang Z, Wang X, Zhang Z, et al. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells. Stem Cell Res Ther 2017; 8:182.
58. Hamed S, Alshiek J, Aharon A, Brenner B, Roguin A. Red wine consumption improves in vitro migration of endothelial progenitor cells in young, healthy individuals. Am J Clin Nutr 2010; 92:161-169.
59. Huang PH, Chen YH, Tsai HY, Chen JS, Wu TC, Lin FY, et al. Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability. Arterioscler Thromb Vasc Biol 2010; 30:869-877.
60. Hayashi T, Yano K, Matsui-Hirai H, Yokoo H, Hattori Y, Iguchi A. Nitric oxide and endothelial cellular senescence. Pharmacol Ther 2008; 120:333-339.
61. Opie LH, Lecour S. The red wine hypothesis: From concepts to protective signalling molecules. Eur Heart J 2007; 28:1683-1693.
62. Lippi G, Franchini M, Favaloro EJ, Targher G. Moderate red wine consumption and cardiovascular disease risk: Beyond the “french paradox”. Semin Thromb Hemost 2010; 36:59-70.
63. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. Faseb j 2001; 15:1798-1800.
64. Chen J. Hematopoietic stem cell development, aging and functional failure. Int J Hematol 2011; 94:3-10.
65. Vanikar AV, Trivedi HL, Kumar A, Gopal SC, Patel HV, Gumber MR, et al. Co-infusion of donor adipose tissue-derived mesenchymal and hematopoietic stem cells helps safe minimization of immunosuppression in renal transplantation-single center experience. Ren Fail 2014; 36:1376-1384.
66. Verburg RJ, Kruize AA, van den Hoogen FH, Fibbe WE, Petersen EJ, Preijers F, et al. High-dose chemotherapy and autologous hematopoietic stem cell transplantation in patients with rheumatoid arthritis: Results of an open study to assess feasibility, safety, and efficacy. Arthritis Rheum 2001; 44:754-760.
67. Thakkar UG, Trivedi HL, Vanikar AV, Dave SD. Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy 2015; 17:940-947.
68. Zhang X-P, Liu J, Xu C-Y, Wei Q, Li J, Wang L, et al. [effect of angelica sinensis polysaccharide on expression of telomere, telomerase and p53 in mice aging hematopoietic stem cells]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 2013; 38:2354-2358.
69. Yu W, Qin X, Jin Y, Li Y, Santiskulvong C, Vu V, et al. Tianshengyuan-1 (tsy-1) regulates cellular telomerase activity by methylation of tert promoter. Oncotarget 2017; 8:7977-7988.
70. Yue Z, Rong J, Ping W, Bing Y, Xin Y, Feng L, et al. Gene expression of the p16ink4a-rb and p19arf-p53-p21cip/waf1 signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside rg1. Genet Mol Res 2014; 13:10086-10096.
71. Tang YL, Zhou Y, Wang YP, Wang JW, Ding JC. Sirt6/nf-kappab signaling axis in ginsenoside rg1-delayed hematopoietic stem/progenitor cell senescence. Int J Clin Exp Pathol 2015; 8:5591-5596.
72. Zhou Y, Yang B, Yao X, Wang Y. [experimental study of relationship between effect of ginsenoside rg1 to delay hematopoietic stem cell senescence and expression of p16(ink4a)]. Zhongguo Zhong yao za zhi 2011; 36:608-613.
73. Li Y ZY, Wang YP, Wang JW, He YH, Ding JC, Zhao WZ, et al. Effect of sirt1/nf-κb signal axis on delaying hematopoietic stem cell and progenitor cell senescence with ginsenoside r1 in aging model rat induced by d-galactose. Chinese Traditional and Herbal Drugs 2016; 47:4016-4020.
74. Zhou Y, Liu J, Cai S, Liu D, Jiang R, Wang Y. Protective effects of ginsenoside rg1 on aging sca‑1+ hematopoietic cells. Mol Med Rep 2015; 12:3621-3628.
75. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 2006; 107:358-366.
76. Zhang H, Zhai Z, Wang Y, Zhang J, Wu H, Wang Y, et al. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 2013; 54:40-50.
77. Chen C SK, Geng S, Liu J, Zhou Y, Wang L, Wang JW, et al. Effect of ginsenoside rg1 on radiation-induced senescence of hematopoietic stem/progenitor cells and relevant mechanism. Chin J Biol 2013; 26:1604-1609+1616.
78. Kong D, Zhuang X, Wang D, Qu H, Jiang Y, Li X, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab 2014; 60:1969-1976.
79. Han X, Zhang J, Xue X, Zhao Y, Lu L, Cui M, et al. Theaflavin ameliorates ionizing radiation-induced hematopoietic injury via the nrf2 pathway. Free Radic Biol Med 2017; 113:59-70.
80. Bai L, Shi G, Yang Y, Chen W, Zhang L. Anti-aging effect of siraitia grosuenorii by enhancement of hematopoietic stem cell function. Am J Chin Med 2016; 44:803-815.
81. Chen L.-B. ZK-S, Huang X.-P., Deng C.-Q. Effects of astragalus-angelica compatibility on proliferation of hematopoietic progenitor cells in mice with bone marrow hematopoiesis suppression. Chinese Traditional and Herbal Drugs 2016; 47:4395-4400.
82. Mu X. ZY, Li J., Xia J., Chen X., Jing P., Song X., Wang L., Wang Y. Angelica sinensis polysaccharide prevents hematopoietic stem cells senescence in d-galactose-induced aging mouse model. Stem Cells International 2017.
83. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-myc as a target of the apc pathway. Science 1998; 281:1509-1512.
84. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin d1 in colon carcinoma cells. Nature 1999; 398:422-426.
85. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, et al. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 2008; 32:8-15.
86. Yun SP, Lee MY, Ryu JM, Song CH, Han HJ. Role of hif-1alpha and vegf in human mesenchymal stem cell proliferation by 17beta-estradiol: Involvement of pkc, pi3k/akt, and mapks. Am J Physiol Cell Physiol 2009; 296:C317-326.
87. Stewart MC, Stewart AA. Mesenchymal stem cells: Characteristics, sources, and mechanisms of action. Vet Clin North Am Equine Pract 2011; 27:243-261.
88. Suk KT, Yoon JH, Kim MY, Kim CW, Kim JK, Park H, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology 2016; 64:2185-2197.
89. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014; 32:1254-1266.
90. Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: A randomized, placebo-controlled pilot study. Respir Res 2014; 15:39.
91. Panes J, Garcia-Olmo D, Van Assche G, Colombel JF, Reinisch W, Baumgart DC, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (cx601) for complex perianal fistulas in crohn’s disease: A phase 3 randomised, double-blind controlled trial. Lancet 2016; 388:1281-1290.
92. Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY. Clinical evaluation of human umbilical cord mesenchymal stem cell transplantation after angioplasty for diabetic foot. Exp Clin Endocrinol Diabetes 2016; 124:497-503.
93. Rushkevich YN, Kosmacheva SM, Zabrodets GV, Ignatenko SI, Goncharova NV, Severin IN, et al. The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in belarus. Bull Exp Biol Med 2015; 159:576-581.
94. Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG, et al. Intracoronary infusion of wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: Double-blind, randomized controlled trial. BMC Med 2015; 13:162.
95. Soeder Y, Loss M, Johnson CL, Hutchinson JA, Haarer J, Ahrens N, et al. First-in-human case study: Multipotent adult progenitor cells for immunomodulation after liver transplantation. Stem Cells Transl Med 2015; 4:899-904.
96. Zhao XF, Xu Y, Zhu ZY, Gao CY, Shi YN. Clinical observation of umbilical cord mesenchymal stem cell treatment of severe systolic heart failure. Genet Mol Res 2015; 14:3010-3017.
97. Caruana G, Bertozzi N, Boschi E, Pio Grieco M, Grignaffini E, Raposio E. Role of adipose-derived stem cells in chronic cutaneous wound healing. Ann Ital Chir 2015; 86:1-4.
98. Llufriu S, Sepulveda M, Blanco Y, Marin P, Moreno B, Berenguer J, et al. Randomized placebo-controlled phase ii trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One 2014; 9:e113936.
99. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7:335-343.
100. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in alzheimer’s disease mice by modulation of immune responses. Stem Cells 2010; 28:329-343.
101. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997; 64:295-312.
102. Izadpanah R, Schachtele DJ, Pfnur AB, Lin D, Slakey DP, Kadowitz PJ, et al. The impact of statins on biological characteristics of stem cells provides a novel explanation for their pleiotropic beneficial and adverse clinical effects. Am J Physiol Cell Physiol 2015; 309:C522-531.
103. Ling L, Camilleri ET, Helledie T, Samsonraj RM, Titmarsh DM, Chua RJ, et al. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells. Gene 2016; 576:292-303.
104. Klinkhammer BM, Kramann R, Mallau M, Makowska A, van Roeyen CR, Rong S, et al. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PLoS One 2014; 9:e92115.
105. Zhang D, Lu H, Chen Z, Wang Y, Lin J, Xu S, et al. High glucose induces the aging of mesenchymal stem cells via akt/mtor signaling. Mol Med Rep 2017; 16:1685-1690.
106. Wang Y, Han ZB, Song YP, Han ZC. Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012; 2012:652034.
107. Despars G, Carbonneau CL, Bardeau P, Coutu DL, Beauséjour CM. Loss of the osteogenic differentiation potential during senescence is limited to bone progenitor cells and is dependent on p53. PLoS One 2013; 8:e73206.
108. Li Y, Xu X, Wang L, Liu G, Li Y, Wu X, et al. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. Cell Biosci 2015; 5:21.
109. Di GH, Liu Y, Lu Y, Liu J, Wu C, Duan HF. Il-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One 2014; 9:e113572.
110. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 2013; 14:17986-18001.
111. Warrier SR, Haridas N, Balasubramanian S, Jalisatgi A, Bhonde R, Dharmarajan A. A synthetic formulation, dhanwantharam kashaya, delays senescence in stem cells. Cell Prolif 2013; 46:283-290.
112. Sanap A, Chandravanshi B, Shah T, Tillu G, Dhanushkodi A, Bhonde R, et al. Herbal pre-conditioning induces proliferation and delays senescence in wharton’s jelly mesenchymal stem cells. Biomed Pharmacother 2017; 93:772-778.
113. Choi MR, Han DMR, Kim SH, Ohn T, Jung KH, Chai YG. Resveratrol relieves hydrogen peroxide-induced premature senescence associated with sirt1 in human mesenchymal stem cells. Mol Cell Toxicol 2014; 10:29-39.
114. Shin JH, Jeon HJ, Park J, Chang MS. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via nrf2. Int J Mol Med 2016; 38:1075-1082.
115. Wang JY, Chen WM, Wen CS, Hung SC, Chen PW, Chiu JH. Du-huo-ji-sheng-tang and its active component ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells. J Ethnopharmacol 2017; 198:64-72.
116. Jeong S, Oh YS, Joe I, Jeong SY, Cho HM, Lee JS, et al. Functional restoration of replicative senescent mesenchymal stem cells by the brown alga undaria pinnatifida. Anim Cells Syst 21:108-114.
117. Hu W, Jing P, Wang L, Zhang Y, Yong J, Wang Y. The positive effects of ginsenoside rg1 upon the hematopoietic microenvironment in a d-galactose-induced aged rat model. BMC Complement Altern Med 2015; 15:119.
118. Yang F, Yan G, Li Y, Han Z, Zhang L, Chen S, et al. Astragalus polysaccharide attenuated iron overload-induced dysfunction of mesenchymal stem cells via suppressing mitochondrial ros. Cell Physiol Biochem 2016; 39:1369-1379.
119. Meza-Zepeda LA, Noer A, Dahl JA, Micci F, Myklebost O, Collas P. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 2008; 12:553-563.
120. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279-4295.
121. Philips BJ, Marra KG, Rubin JP. Adipose stem cell-based soft tissue regeneration. Expert Opin Biol Ther 2012; 12:155-163.
122. Mirsaidi A, Genelin K, Vetsch JR, Stanger S, Theiss F, Lindtner RA, et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials 2014; 35:7326-7335.
123. Ohashi CM, Caldeira FA, Feitosa-Junior DJ, Valente AL, Dutra PR, Miranda MD, et al. Stem cells from adipose tissue improve the time of wound healing in rats. Acta Cir Bras 2016; 31:821-825.
124. Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodriguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 2009; 30:3259-3270.
125. Mantovani C, Terenghi G, Magnaghi V. Senescence in adipose-derived stem cells and its implications in nerve regeneration. Neural Regen Res 2014; 9:10-15.
126. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 2009; 15:1082-1087.
127. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993; 259:87-91.
128. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound il-1alpha is an upstream regulator of the senescence-associated il-6/il-8 cytokine network. Proc Natl Acad Sci U S A 2009; 106:17031-17036.
129. Pirmoradi S, Fathi E, Farahzadi R, Pilehvar-Soltanahmadi Y, Zarghami N. Curcumin affects adipose tissue-derived mesenchymal stem cell aging through tert gene expression. Drug Res (Stuttg) 2017.
130. Lei LT, Chen JB, Zhao YL, Yang SP, He L. Resveratrol attenuates senescence of adipose-derived mesenchymal stem cells and restores their paracrine effects on promoting insulin secretion of ins-1 cells through pim-1. Eur Rev Med Pharmacol Sci 2016; 20:1203-1213.
131. Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran J Basic Med Sci 2016; 19:1258-1270.
132. Rajamani K, Lin YC, Wen TC, Hsieh J, Subeq YM, Liu JW, et al. The antisenescence effect of trans-cinnamaldehyde on adipose-derived stem cells. Cell Transplant 2015; 24:493-507.
133. Machado AK, Cadoná, FC, Azzolin VF, Dornelles EB, Barbisan F, Ribeiro EE, et al. Guaraná (paullinia cupana) improves the proliferation and oxidative metabolism of senescent adipocyte stem cells derived from human lipoaspirates. Food Res Int 2015:426-433.
134. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22:411-417.
135. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 102:451-461.
136. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science 2004; 303:359-363.
137. Youn SW, Kim DS, Cho HJ, Jeon SE, Bae IH, Yoon HJ, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci 2004; 35:113-123.
138. Lee J, Shin YK, Song JY, Lee KW. Protective mechanism of morin against ultraviolet b-induced cellular senescence in human keratinocyte stem cells. Int J Radiat Biol 2014; 90:20-28.
139. Wang F, Smith NR, Tran BA, Kang S, Voorhees JJ, Fisher GJ. Dermal damage promoted by repeated low-level uv-a1 exposure despite tanning response in human skin. JAMA Dermatol 2014; 150:401-406.
140. Khor SC, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S. Tocotrienol-rich fraction ameliorates antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in human myoblasts. Oxid Med Cell Longev 2017; 2017:3868305.
141. Galli R, Gritti A, Bonfanti L, Vescovi AL. Neural stem cells: An overview. Circ Res 2003; 92:598-608.
142. Chen L, Yao H, Chen X, Wang Z, Xiang Y, Xia J, et al. Ginsenoside rg1 decreases oxidative stress and down-regulates akt/mtor signalling to attenuate cognitive impairment in mice and senescence of neural stem cells induced by d-galactose. Neurochem Res 2018; 43:430-440.
143. Cheng X, Yao H, Xiang Y, Chen L, Xiao M, Wang Z, et al. Effect of angelica polysaccharide on brain senescence of nestin-gfp mice induced by d-galactose. Neurochem Int 2019; 122:149-156.
144. Luo Y, Li L, Zou P, Wang J, Shao L, Zhou D, et al. Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 2014; 97:20-29.
145. Xu G, Wu H, Zhang J, Li D, Wang Y, Wang Y, et al. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic Biol Med 2015; 87:15-25.