The effect of human wharton’s jelly-derived mesenchymal stem cells on MC4R, NPY, and LEPR gene expression levels in rats with streptozotocin-induced diabetes

Document Type : Original Article

Authors

1 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA

Abstract

Objective(s): Type 1 diabetes (T1D) is an autoimmune disease resulting from inflammatory destruction of islets β-cells. Nowadays, progress in cell therapy, especially mesenchymal stem cells (MSCs) proposes numerous potential remedies for T1D. We aimed to investigate the combination therapeutic effect of these cells with insulin and metformin on neuropeptide Y, melanocortin-4 receptor, and leptin receptor genes expression in TID.
Materials and Methods: One hundreds male rats were randomly divided into seven groups: the control, diabetes, insulin (Ins.), insulin+metformin (Ins.Met.), Wharton’s Jelly-derived MSCs (WJ-MSCs), insulin+metformin+WJ-MSCs (Ins.Met.MSCs), and insulin+WJ-MSCs (Ins.MSCs). Treatment was performed from the first day after diagnosis as diabetes. Groups of the recipient WJ-MSCs were intraportally injected with 2× 10⁶ MSCs/kg at the 7th and 28th days of study. Fasting blood sugar was monitored and tissues and genes analysis were performed.
Results: The blood glucose levels were slightly decreased in all treatment groups within 20th and 45th days compared to the diabetic group. The C-peptide level enhanced in these groups compared to the diabetic group, but this increment in Ins.MSCs group on the 45th days was higher than other groups. The expression level of melanocortin-4 receptor and leptin receptor genes meaningfully up-regulated in the treatment groups, while the expression of neuropeptide Y significantly down-regulated in the treatment group on both times of study.
Conclusion: Our data exhibit that infusion of MSCs and its combination therapy with insulin might ameliorate diabetes signs by changing the amount of leptin and subsequent changes in the expression of neuropeptide Y and melanocortin-4 receptor.

Keywords


1.    Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 2012; 30:1664-1674.
2. Dave SD, Trivedi HL, Gopal SC, Chandra T. Case Report: Combined therapy of insulin-producing cells and haematopoietic stem cells offers better diabetic control than only haematopoietic stem cells’ infusion for patients with insulin-dependent diabetes. BMJ Case Rep. 2014; 2014.
3.    Chen L, Gao G-Q, Wang L, Song J, Chen B, Xu Y-X, et al. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. Clin Invest Med. 2008; 31:328-337.
4.    Gao X, Song L, Shen K, Wang H, Qian M, Niu W, et al. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol Cell Endocrinol. 2014; 388:41-50.
5.    Le PT-B, Van Pham P, Vu NB, Dang LT-T, Phan NK. Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus. Biomedical Research and Therapy. 2016; 3:1034-1044.
6.    Si Y, Zhao Y, Hao H, Liu J, Guo Y, Mu Y, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes. 2012; 61:1616-1625.
7.    Dang LT-T, Bui AN-T, Pham VM, Phan NK, Van Pham P. Production of islet-like insulin-producing cell clusters in vitro from adipose-derived stem cells. Biomedical Research and Therapy. 2015; 2:184-192.
8.    Voltarelli JC, Couri CE, Rodrigues MC, Moraes DA, Stracieri A-BP, Pieroni F, et al. Stem cell therapies for type 1 diabetes mellitus. Indian J Exp Biol. 2011; 49:395-400.
9.    Wu C, Liu F, Li P, Zhao G, Lan S, Jiang W, et al. Engineered hair follicle mesenchymal stem cells overexpressing controlled-release insulin reverse hyperglycemia in mice with type L diabetes. Cell Transplant. 2015; 24:891-907.
10.    Wu X-H, Liu C-P, Xu K-F, Mao X-D, Zhu J, Jiang J-J, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol. 2007; 13:3342-3349.
11.    Xiao N, Zhao X, Luo P, Guo J, Zhao Q, Lu G, et al. Co-transplantation of mesenchymal stromal cells and cord blood cells in treatment of diabetes. Cytotherapy. 2013; 15:1374-1384.
12.    Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, et al. Human umbilical cord‐derived mesenchymal stem cells elicit macrophages into an anti‐inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem cells. 2016; 34:627-639.
13.    Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol. 2010; 248:1415-1422.
14.    Zhou H, Tian H-m, Long Y, Zhang X-x, Zhong L, Deng L, et al. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. Chin Med J (Engl). 2009; 122:2573-2579.
15.    Dang LT-T, Phan NK, Truong KD. Mesenchymal stem cells for diabetes mellitus treatment: new advances. Biomedical Research and Therapy. 2017; 4:1062-1081.
16.    Van Pham P, Vu NB, Pham VM, Truong NH, Pham TL-B, Dang LT-T, et al. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. J Transl Med. 2014; 12:56-65.
17.    Ren H, Sang Y, Zhang F, Liu Z, Qi N, Chen Y. Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int. 2016; 2016.
18.    Van Pham P, Vu NB, Phan NK. Umbilical cord-derived stem cells (MODULATISTTM) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells. Biomedical Research and Therapy. 2016; 3:687-696.
19.    Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014; 15:1009-1016.
20.    Haller MJ, Viener H-L, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol. 2008; 36:710-715.
21.    Montanucci P, Alunno A, Basta G, Bistoni O, Pescara T, Caterbi S, et al. Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jelly-derived mesenchymal stem cells: an in vitro study. Clin Immunol. 2016; 163:34-41.
22.    Atoui R, Chiu RC. Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med. 2012; 1:200-205.
23.    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315-317.
24.    Oh S-H, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest. 2004; 84:607-617.
25.    Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol. 2004; 10:3016-3020.
26.    Nekoei SM, Azarpira N, Sadeghi L, Kamalifar S. In vitro differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells to insulin producing clusters. World J Clin Cases. 2015; 3:640-649.
27.    Ranjbaran H, Khalilian A, Rahmani Z, Amiri MM. Differentiation of Wharton’s Jelly Derived Mesenchymal Stem Cells into Insulin Producing Cells. Int J Hematol Oncol Stem Cell Res. 2018; 12:219-228.
28.    Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol. 2006; 36:2566-2573.
29.    Siegel G, Schäfer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009; 87:S45-S49.
30.    Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol. 2007; 28:219-226.
31.    Maldonado M, Huang T, Yang L, Xu L, Ma L. Human umbilical cord Wharton jelly cells promote extra-pancreatic insulin formation and repair of renal damage in STZ-induced diabetic mice. Cell Commun Signal. 2017; 15-27.
32.    Li L, Lu J, Shen S, Jia X, Zhu D. Wharton’s jelly-derived mesenchymal stem cell therapy to improve β-cell function in patients with type 1 diabetes and ketoacidosis: a single-centre, single-group, open-label, phase 2 trial. The Lancet Diabetes & Endocrinology. 2016; 4:S17.
33.    Nakata M, Yamamoto S, Okada T, Gantulga D, Okano H, Ozawa K, et al. IL-10 gene transfer upregulates arcuate POMC and ameliorates hyperphagia, obesity and diabetes by substituting for leptin. Int J Obes (Lond). 2016; 40:425-433.
34.    Ladyman S, Grattan D. Central effects of leptin on glucose homeostasis are modified during pregnancy in the rat. J Neuroendocrinol 2016; 28.
35.    Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front Neurosci 2013; 7:51-62.
36.    Meek TH, Morton GJ. Leptin, diabetes, and the brain. Indian J Endocrinol Metab. 2012; 16:S534-S542
37.    Mittendorfer B, Klein S. Absence of leptin triggers type 1 diabetes. Nat Med. 2014; 20:705-706
38.    Fujikawa T, Chuang J-C, Sakata I, Ramadori G, Coppari R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci U S A. 2010; 107:17391-17396.
39.    Patterson E, Marques TM, O’Sullivan O, Fitzgerald P, Fitzgerald GF, Cotter PD, et al. Streptozotocin-induced type-1-diabetes disease onset in Sprague–Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Microbiology. 2015; 161:182-193.
40.    Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015; 70:5.47:1-20.
41.    Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward KW. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med. 2004; 54:252-257.
42.    Han X, Tao Y-L, Deng Y-P, Yu J-W, Cai J, Ren G-F, et al. Metformin ameliorates insulitis in STZ-induced diabetic mice. PeerJ. 2017; 5:e3155.
43.    Pirjali T, Azarpira N, Pirjali S, Ayatollahi M, Aghdaei MH, Shamsabadi TA. Isolation of mesenchymal stem cells from fetal tissues. J Fasa Univ Med Sci 2013; 3:248-259.
44.    Goyal U, Jaiswal C, Ta M. Isolation and establishment of mesenchymal stem cells from Wharton’s Jelly of human umbilical cord. Stem Cells 2018; 8:e2735
45.    El-Nawasany MA, Khedr EG, Motawee ME, Ali ZA, Kamel HE, Abu-Amara TM. Isolation, culture and identification of undifferentiated Wharton’s Jelly mesenchymal stem cells (WJ-MSCs) derived from the human umbilical cord. Open Science Journal of Clinical Medicine. 2015; 3:182-187.
46.    Salehi MS, Namavar MR, Shirazi MRJ, Rahmanifar F, Tamadon A. A simple method for isolation of the anteroventral periventricular and arcuate nuclei of the rat hypothalamus. Anatomy. 2013; 7.
47.    Sosenko JM, Palmer JP, Rafkin LE, Krischer JP, Cuthbertson D, Greenbaum CJ, et al. Trends of earlier and later responses of C-peptide to oral glucose challenges with progression to type 1 diabetes in Diabetes Prevention Trial–Type 1 participants. Diabetes Care. 2010; 33:620-625.
48.    Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L. The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol. 2016; 53:683-691.
49.    Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes. 2013; 4:499-521.
50.    Hu J, Wang Y, Wang F, Wang L, Yu X, Sun R, et al. Effect and mechanisms of human Wharton’s jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model. Endocrine. 2015; 48:124-134.
51.    Hu J, Wang F, Sun R, Wang Z, Yu X, Wang L, et al. Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine. 2014; 45:279-287.
52.    Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud. 2009; 6:260-270
53.    Xin Y, Jiang X, Wang Y, Su X, Sun M, Zhang L, et al. Insulin-producing cells differentiated from human bone marrow mesenchymal stem cells in vitro ameliorate streptozotocin-induced diabetic hyperglycemia. PloS one. 2016; 11:e0145838.
54.    Zhang Y, Shen W, Hua J, Lei A, Lv C, Wang H, et al. Pancreatic islet-like clusters from bone marrow mesenchymal stem cells of human first-trimester abortus can cure streptozocin-induced mouse diabetes. Rejuvenation Res. 2010; 13:695-706.
55.    Wang M, Song L, Strange C, Dong X, Wang H. Therapeutic Effects of Adipose Stem Cells from Diabetic Mice for the Treatment of Type 2 Diabetes. Mol Ther. 2018; 26:1921-1930.
56.    Li Z, Zhang Z, Chen X, Zhou J, Xiao X-m. Treatment evaluation of Wharton’s jelly-derived mesenchymal stem cells using a chronic salpingitis model: an animal experiment. Stem cell research & therapy. 2017; 8:232.
57.    Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes care. 2016; 39:149-157.
58.    Rubenstein AH, Clark JL, Melani F, Steiner DF. Secretion of proinsulin C-peptide by pancreatic β cells and its circulation in blood. Nature. 1969; 224:697.
59.    Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975; 55:1278-1283.
60.    Ferrannini E. The target of metformin in type 2 diabetes. N Engl J Med. 2014; 371:1547-1548.
61.    Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism. 2015; 64:1629-1639.
62.    Zhou J, Xu G, Yan J, Li K, Bai Z, Cheng W, et al. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J Ethnopharmacol. 2015; 164:229-238.
63.    Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017; 10:679-689.
64.    Routh VH, Hao L, Santiago AM, Sheng Z, Zhou C. Hypothalamic glucose sensing: making ends meet. Front Syst Neurosci. 2014; 8:236.
65.    Berglund ED, Vianna CR, Donato J, Kim MH, Chuang J-C, Lee CE, et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest. 2012; 122:1000-1009.
66.    Fernández-Formoso G, Pérez-Sieira S, González-Touceda D, Dieguez C, Tovar S. Leptin, 20 years of searching for glucose homeostasis. Life Sci. 2015; 140:4-9.
67.    Huo L, Gamber K, Greeley S, Silva J, Huntoon N, Leng X-H, et al. Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell metab. 2009; 9:537-547.
68.    Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest. 2008; 118:1796-1805.
69.    Kubota T, Kubota N, Kadowaki T. Imbalanced insulin actions in obesity and type 2 diabetes: key mouse models of insulin signaling pathway. Cell Metab. 2017; 25:797-810.
70.    Seufert J. Leptin effects on pancreatic β-cell gene expression and function. Diabetes. 2004; 53:S152-S158.
71.    Zhang Q-j, Yang C-c, Zhang S-y, Zhang L-h, Li J. Alteration of NPY in hypothalamus and its correlation with leptin and ghrelin during the development of T2DM in a rat model. SpringerPlus. 2016; 5:1913.
72.    La Cava A, Alviggi C, Matarese G. Unraveling the multiple roles of leptin in inflammation and autoimmunity. J Mol Med (Berl). 2004; 82:4-11.
73.    Perry RJ, Zhang X-M, Zhang D, Kumashiro N, Camporez J-PG, Cline GW, et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nature medicine. 2014; 20:759.
74.    Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003; 421:856.
75.    Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001; 411:480.
76.    Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L. Central melanocortin receptors regulate insulin action. J Clin Invest. 2001; 108:1079-1085.
77.    Adage T, Scheurink AJ, De Boer SF, De Vries K, Konsman JP, Kuipers F, et al. Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci. 2001; 21:3639-3645.
78.    Fan W, Dinulescu DM, Butler AA, Zhou J, Marks DL, Cone RD. The central melanocortin system can directly regulate serum insulin levels. Endocrinol. 2000; 141:3072-3079.
79.    Savontaus E, Breen TL, Kim A, Yang LM, Chua Jr SC, Wardlaw SL. Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinol. 2004; 145:3881-3891.
80.    Novoselova T, Chan L, Clark A. Pathophysiology of melanocortin receptors and their accessory proteins. Best Pract Res Clin Endocrinol Metab. 2018; 32:93-106.
81.    Park JY, Chong AY, Cochran EK, Kleiner DE, Haller MJ, Schatz DA, et al. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. J Clin Endocrinol Metab. 2008; 93:26-31.
82.    Spanswick D, Smith M, Mirshamsi S, Routh V, Ashford M. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci. 2000; 3:757-758.
83.    Baver SB, Hope K, Guyot S, Bjørbaek C, Kaczorowski C, O’Connell KM. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J Neurosci. 2014; 34:5486-5496.
84.    Al-Qassab H, Smith MA, Irvine EE, Guillermet-Guibert J, Claret M, Choudhury AI, et al. Dominant role of the p110β isoform of PI3K over p110α in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab. 2009; 10:343-354.
85.    Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007; 5:438-449.
86.    Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012; 13:1079-1086.
87.    Mirshamsi S, Laidlaw HA, Ning K, Anderson E, Burgess LA, Gray A, et al. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and K ATP channel activation. BMC Neurosci. 2004; 5:54.
88.    Marks JL, Waite K. Some acute effects of intracerebroventricular neuropeptide Y on insulin secretion and glucose metabolism in the rat. J Neuroendocrinol. 1996; 8:507-513.
89.    Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996; 84:491-495.
90.    Tavares E, Maldonado R, Minano FJ. Aminoprocalcitonin-mediated suppression of feeding involves the hypothalamic melanocortin system. Am J Physiol Endocrinol Metab. 2013; 304:E1251-1262.