Prevalence of plasmid-encoded carbapenemases in multi-drug resistant Escherichia coli from patients with urinary tract infection in northern Iran

Document Type : Original Article

Authors

1 University of Guilan, University Campus 2, Rasht, Iran

2 Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran

Abstract

Objective(s): Resistance to carbapenems as the last line for controlling resistant bacteria is increasing due to production of carbapenemase. The aim of this study was to detect the plasmid-encoded carbapenemases using phenotypic methods and multiplex PCR among the multi-drug resistant (MDR) isolates from patients with urinary tract infection (UTI) in northern Iran.
Materials and Methods: Antimicrobial susceptibility testing and extended spectrum β-lactamase (ESBL) production test were performed for 91 MDR Escherichia coli strains by disc diffusion and double disk synergy tests (DDST), respectively. Carbapenemases production was confirmed using Hodge test, EDTA double disk synergy test (EDST) and combined disk test (CDT). The isolates were subjected to PCR targeting blaIMP, blaVIM, blaKPC and blaOXA-48 β-Lactamase genes.
Results: Resistance of isolates to 1st, 2nd, 3rd, and 4th generations of cephalosporins, carbapenems, and penicillins were 73%, 84.5%, 62%, 37.5%, 17.5%, and 76%, respectively. Based on CDT and Hodge test, 1 (3%) and based on EDST, 2 (6%) of 33 ESBL producers synthesize a type of carbapenemase. The frequency of blaIMP, blaVIM, blaKPC, and blaOXA-48 genes was 8.7%, 9.8%, 2.1%, and 15.3%, respectively. Existence of blaIMP conferred more resistance to cephalotin, fosfomycin, and piperacillin (P≤0.01) and carrying blaVIM caused more resistance to cephalotin, cefepime, and ceftazidime (P≤0.01). The presence of blaKPC conferred more resistance to cephalotin and presence of blaOXA-48 caused more resistance to chloramphenicol and piperacillin (P≤0.05).
Conclusion: Identification and controlling of this nearly low frequent ESBL and carbapenemase producing strains are important due to the presence of plasmid genes encoding carbapenemase.

Keywords


1. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect 2010; 16:102–111.
2. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 2011; 11:381–393.
3. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20:440–458.
4. Yousefi S, Farajnia S, Nahaei MR, Ghojazadeh M, Akhi M, Sharifi Y, et al. Class 1 integron and imipenem resistance in clinical isolates of Pseudomonas aeruginosa: prevalence and antibiotic susceptibility. Iran J Microbiol 2010; 2:115–121.
5. Davoudi-Monfared E, Khalili H. The threat of carbapenem-resistant Gram-negative bacteria in a Middle East region. Infect Drug Resist 2018; 11:1831-80.                                                                              6. Rahbar M, Mehragan H, Haji Ali Akbari N. Prevalence of drug resistance in nonfermenter Gram-negative bacilli. Iran J Pathol 2010; 5:90–96.
7. Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, Hashemi A. Phenotypic and molecular detection of metallo-beta-lactamase genes among imipenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients with burn injuries. Arch Clin Infect Dis 2016; 11(4):e39036.
8. Ahn C, Syed A, Hu F, O’Hara JA, Rivera JI, Doi Y. Microbiological features of KPC-producing Enterobacter isolates identified in a US hospital system. Diagn Microbiol Infect Dis 2014; 80:154–158.
9. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18:306–325.
10. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17:1791–1798.
11. Daikos GL, Petrikkos P, Psichogiou M,  Kosmidis C, Vryonis E, Skoutelis A, et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother 2009; 53:1868–1873.
12. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48:15–22.
13. Solgia H, Giskeb CG, Badmastia F, Aghamohammada S, Havaeic SA, Sabetid S. Emergence of carbapenem resistant Escherichia coli isolates producing blaNDM and blaOXA-48-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals. Infect Genet Evol 2017; 55:318-323.
14. Schito G, Naber K, Botto H,  Palou J, Mazzei T, Gualco L, et al. The ARESC Study: an international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int J Antimicrob Agents 2009; 34:407-413.
15. El Bouamri M, Arsalane L, El Kamouni Y, Zouhair S. Antimicrobial susceptibility of urinary Klebsiella pneumonia and the emergence of carbapenem-resistance strain. Afr J Urol 2015; 21:36-40.
16. Ngwai Y, Akpotu M, Okidake R, Sounyo AA, Onanuga A, Origbo SO. Antimicrobial susceptibility of Escherichia coli and other coliforms isolated from urine of asymptomatic students in Bayelsa State, Nigeria. Afr J Microbiol Res 2011; 5:184-191.
17. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2012; 18:432–438.
18. Hrabak J, Studentov V, Walkov´ R, Žemličkováb H, Jakubůb V, Chudáčkováa E, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 2012; 50:2441–2443.
19. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 2011; 49:3321–3324.
20. Barraud O, Baclet MC, Denis F, Ploy MC. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons. J Antimicrob Chemother 2010; 65:1642–1645.
21. Gheitani L, Fazeli H. Prevalence of blaVIM, MP, and bla KPC genes among carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from Kurdistan and Isfahan hospitals, Iran. Res Mol M 2018; 6:12-20.
22. Cheesbrough M. Manual of medical microbiology. Low price ed. Britain: Oxford Press; 2000. p. 251-260.
23. CLSI. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplements. CLSI document M100eS24. Wayne, PA: CLSI; 2014.
24. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH.  Modified Hodge test and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7:88–91.
25. Dallenne C, Costa AD, Decre´D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important b-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65:490–495.
26. Cornaglia G, Akova M, Amicosante G, Cantón R, Cauda R, Docquier JD, et al. Metallo-β-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents 2007; 29:380–388.
27. Soltan Dallal M, Sabbaghi A, Molla Aghamirzaeie H, Rastegar Lari A, Eshraghian MR, Fallah Mehrabad J, et al. Prevalence of AmpC and SHV β-lactamases in clinical isolates of Escherichia coli From Tehran jospitals. Jundishapur J Microbiol 2013; 6:176-180.
 28. Zaniani FR, Meshkat Z, Naderi Nasab M, Khaje-Karamadini M, Ghazvini K, Rezaee A, et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. Iran J Basic Med Sci 2012; 15:654-660.
29. Mobasherizadeh S, Shokri D, Zargarzadeh A, Jalalpour S, Ebneshahidi S, Sajadi M. Antimicrobial resistance surveillance among hospitalized and non-hospitalized extend-spectrum beta-lactamase producing Escherichia coli from four tertiary care hospitals in Isfahan, Iran; 2008-2011. Afr J Microbiol Res 2012; 6:953–999.
30. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient test for screening metallo-β-lactamase-producing Gram negative bacteria by using thiol compounds. J Clin Microbiol 2000; 38:40-43.
31. Jesudasan MV, Kandathil AJ, Balaji V. Comparison of two methods to detect carbapenemase and metallo-β-lactamase production in clinical isolates. Indian J med Res 2005; 121:780-783.
32. John S, Balagurunathan R. Metallo beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter baumannii. Indian J Med Microbiol 2011; 29:302-304.
33. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Clin Microbiol Res 2008; 21:538-582.
34. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase producing isolates of Pseudomonas spp and Acinetobacter spp. J Clin Microbiol 2003; 41:4623-4629.
35. Behra B, Mathur P, Das A, Kapil A, Sharma V. An evaluation of four different phenotypic techniques for detection of metallo-β-lactamase producing Pseudomonas aeruginosa. Indian J Med Microbiol 2008; 26:233-237.
36. Eshetie S, Unakal C, Gelaw A, Ayelign B, Endris M, Moges F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrob Resist Infect Control 2015; 4:12-20.
37. Mosavian M, Koraei D. Molecular detection of IMP carbapenemase-producing Gram-negative bacteria isolated from clinical specimens in Ahvaz, Iran. Jentashapir J Health Res 2016; 7:e36394.
38. Nojoomi F, Ghasemian A. Resistance and virulence factor determinants of carbapenem-resistant Escherichia coli clinical isolates in three hospitals in Tehran, IR Iran. Infect Epidemiol Microbiol 2017; 3:107-111.
39. Shams S, Hashemi A, Esmkhani M, Kermani S, Shams E, Piccirillo A. Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Res Notes 2018; 11:314-318.
40. Mariappan S, Sekar U, Kamalanathan, A. Carbapenemase-producing Enterobacteriaceae: risk factors for infection and impact of resistance on outcomes. Int J Appl Basic Med Res 2017; 7:32-39.
41. Solanki R, Vanjari L, Subramanian S, Aparna B, Nagapriyanka E, Lakshmi V. Comparative evaluation of multiplex PCR and routine laboratory phenotypic methods for detection of carbapenemases among Gram negative bacilli. J Clin Diagn Res 2014; 8:DC23-26.
42. Pavelkovich A, Balode A, Edquist P, Egorova S, Ivanova M, Kaftyreva L, et al. Detection of carbapenemase-producing Enterobacteriaceae in the Baltic countries and St. Petersburg area. BioMed Res Int 2014; Article ID 548960.
43. Swaminathan A, Ardra M, Manoharan A, Prithi Nair K, Girija KR. Characterization of carbapenemase-producing Gram-negative bacilli among clinical isolates in a tertiary care centre in Kerala, South India. J Acad Clin Microbiol 2016; 18:100-104.
44. Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F. Carbapenemase genes among multidrug resistant Gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. BioMed Res Int 2014; Article ID:303104.
45. AlTamimi M, AlSalamah A, AlKhulaifi M, AlAjlan H. Comparison of phenotypic and PCR methods for detection of carbapenemases production by Enterobacteriaceae. Saudi J Biol Sci 2017; 24:155–161.
46. Safari M, Mozaffari Nejad AS, Bahador A, Jafari R, Alikhani MY. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi J Biol Sci 2015; 22:424-429.