Ellagic acid attenuates post-cerebral ischemia and reperfusion behavioral deficits by decreasing brain tissue inflammation in rats

Document Type : Original Article

Authors

1 Department of Physiology, College of Sciences, Science and Research Branch, Islamic Azad University, Fars, Iran

2 Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran

3 Persian Gulf Physiology Research Center and Department of Physiology, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran

4 Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran

Abstract

Objective(s): Cerebral ischemia/reperfusion (I/R) causes brain inflammation that ultimately causes long time brain function disturbances. We aimed to evaluate the effect of ellagic acid (EA) on anxiety, depression, locomotion behaviors, blood-brain barrier (BBB) permeability, brain edema, and inflammation in male rats with cerebral I/R.
Materials and Methods: Sixty male Wistar rats (250-300 g) divided into 6 groups randomly with 10 in each: 1) Sham+Veh; rats submitted to the surgery without any I/R and received vehicle (10% DMSO in normal saline 5 ml/kg, gavages). 2) I/R+Veh; 3-5) I/R+EA; I/R rats received 50, 75 and 100 EA mg/kg, by gavages 3 times daily for one week. The cerebral I/R injury was induced by clamping the bilateral common carotid arteries for 20 minutes followed by reperfusion. Behaviors were tested one week after treatment, and brain tissue cytokines were measured by special ELISA kits.
Results: Cerebral I/R disrupted BBB function (P<0.001), increased brain water content (P<0.01), anxiety-like (P<0.001), depression-like (P<0.001) behaviors and cytokines in the brain tissue (P<0.001), while decreased locomotion and exploratory behaviors significantly (PConclusion: The results suggest that EA could be a potential therapeutic agent against cerebral I/R, possibly through its intertwined anti-inflammatory effects. Further research is required to investigate the involved mechanisms in details.

Keywords


1. Liang G, Shi B, Luo W, Yang J. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct 2015;11:1-10.
2. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci 2017;38:1167-1186.
3. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 15;14:1505-1517.
4. Warner DS, Sheng H, Batinić-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004; 207(Pt 18):3221-31.
5. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol 2000; 62:649-671.
6. Wells PG, McCallum GP, Lam KC, Henderson JT, Ondovcik SL. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. Birth Defects Res C Embryo Today 2010; 90:103-197.
7. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4:89-96.
8. Nguyen, Anh Thi Ngoc. Molecular mechanisms of neuroinflammation following global cerebral ischemia: The role of hypothermia therapy. J Am Soc Nephrol 2011; 22:2057-2067.School of graduate studies-Theses, Masters’ Theses, 2009. URI:http://hdl.handle.net/1807/31365
9. Sánchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A. Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke 2004;35:163-168.
10. Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, et al. Pathophysiology and biomarkers in acute ischemic stroke–a review. Trop J Pharm Res 2013; 12:1097-1105. 
11. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6:2-19.
12. Deb P, Sharma S, Hassan K. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 2010;17:197-218.
13. Toole J. Brain infarction: pathophysiology, clinical features, and management. Cerebrovascular disorders 5th ed Philadelphia: Lippincott Williams & Wilkins. 1999:193-232.
14. Air EL, Kissela BM. Diabetes, the metabolic syndrome, and ischemic stroke: epidemiology and possible mechanisms. Diabetes Care 2007;30:3131-3140.
15. Hakim A. Physiology and pathology of cerebral ischemia. Rev Neurol (Paris). 1999;155:631-637.
16. Nejad KH, Gharib-Naseri MK, Sarkaki A, Dianat M, Badavi M, Farbood Y. Effects of ellagic acid pretreatment on renal functions disturbances induced by global cerebral ischemic-reperfusion in rat. Iran J Basic Med Sci 2017;20:75-82.
17. Mashhadizadeh S, Farbood Y, Dianat M, Khodadadi A, Sarkaki A. Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury. Iran J Basic Med Sci 2017;20:399-407.
18. Dolatshahi M, Farbood Y, Sarkaki A, Mansouri SMT, Khodadadi A. Ellagic acid improves hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of Parkinson’s disease. Iran J Basic Med Sci 2015;18:38-46.
19. Amakura Y, Okada M, Tsuji S, Tonogai Y. High-performance liquid chromatographic determination with photodiode array detection of ellagic acid in fresh and processed fruits. J Chromatogr A 2000; 896:87-93.
20. Lei F, Xing DM, Xiang L, Zhao YN, Wang W, Zhang LJ, et al. Pharmacokinetic study of ellagic acid in rat after oral administration of pomegranate leaf extract. J Chromatogr B Analyt Technol Biomed Life Sci 2003 25;796:189-194.
21. Clifford MN, Scalbert A. Ellagitannins–nature, occurrence and dietary burden. J Sci Food and Agricul 2000; 80:1118-1125.
22. Farbood Y, Rashno M, Ghaderi S, Khoshnam SE, Sarkaki A, Rashidi K, et al. Ellagic acid protects against diabetes-associated behavioral deficits in rats: Possible involved mechanisms. Life Sci 2019;225:8-19.
23. Sepúlveda L, Ascacio A, Rodríguez-Herrera R, Aguilera-Carbó A, Aguilar CN. Ellagic acid: Biological properties and biotechnological development for production processes. Afric J Biotech 2011; 18: 23-45.
24. Leeuwenburgh C, Heinecke J. Oxidative stress and antioxidants in exercise. Curr Med Chem 2001; 8:829-838.
25. Farbood Y, Sarkaki A, Hashemi S, Mansouri MT, Dianat M. The effects of gallic acid on pain and memory following transient global ischemia/reperfusion in Wistar rats. Avicenna J Phytomed 2013 Fall;3:329-340.
26. Garcia JH, Wagner S, Liu KF, Hu Xj. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation. Stroke 1995;26:627-635.
27. Lotfi N, Hami J, Hosseini M, Haghir D, Haghir H. Diabetes during pregnancy enhanced neuronal death in the hippocampus of rat offspring. Int J Dev Neurosci 2016; 51:28-35.
28. Mansouri MT, Naghizadeh B, López-Larrubia P, Cauli O. Behavioral deficits induced by lead exposure are accompanied by serotonergic and cholinergic alterations in the prefrontal cortex. Neurochem Int. 2013; 62:232-239. 
29. Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 1996; 739:88-96.
30. Gerriets T, Walberer M, Ritschel N, Tschernatsch M, Mueller C, Bachmann G, et al. Edema formation in the hyperacute phase of ischemic stroke. Laboratory investigation. J Neurosurg 2009;111:1036-1042.
31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 1976;72:248-254.
32. Nikbakht F, Shahedi A, Sheibani V, Najafipour H. The effect of enalapril on brain edema and cytokine production following transient focal cerebral Ischemia in Mice. JKUMS 2008; 15;195-205.
33. Andrews E, Tsai S-Y, Johnson S, Farrer J, Wagner J, Kopen G, et al. Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 2008; 211:588-592.
34. Bokura H, Robinson RG. Long-term cognitive impairment associated with caudate stroke. Stroke 1997;28:970-975.
35. Members WG, Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, et al. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:e85-e151.
36. Bhardwaj A, Alkayed NJ, Kirsch JR, Hurn PD. Mechanisms of ischemic brain damage. Curr Cardiol Rep 2003; 5:160-167.
37. Rabiei Z, Bigdeli M, Asadi-Samani M. The effect of dietary virgin olive oil on brain lipid levels and brain edema in rat stroke models. JZUMS and Health Service 2013;21:56-64.
38. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010;
87:779-789.
39. Khoshnam SE, Farbood Y, Moghaddam HF, Sarkaki A, Badavi M, Khorsandi L. Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab Brain Dis 2018;33:785-793.
40. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY. Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol 2007;561:54-62.
41. Lin L, Wang X, Yu Z. Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol  2016; 5: 213.
42. Liu T, McDonnell P, Young P, White R, Sirèn AL, Hallenbeck J, et al. Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke 1993; 24:1746-1750.
43. Ljunggren B, Norberg K, Siesjö B. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 1974; 77:173-186.
44. Siesjö BK. Cell damage in the brain: a speculative synthesis. J Cereh Blood Flow Metaho 1981;1:155-185.
45. White BC, Wiegenstein JG, Winegar CD. Brain ischemic anoxia: mechanisms of injury. JAMA 1984; 251:1586-1590.
46. Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia: Part I: Pathophysiology. J Neurosurg 1992; 77:169-184.
47. Jordán J, Segura T, Brea D, Galindo MF, Castillo J. Inflammation as therapeutic objective in stroke. Curr Pharm Des 2008; 14:3549-3564.
48. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE. NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke. 2019:14: 574-591.
49. Vila N, Castillo J, Dávalos A, Esteve A, Planas AM, Chamorro Á. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke 2003; 34:671-675.
50. Yasuda Y, Shimoda T, Uno K, Tateishi N, Furuya S, Tsuchihashi Y, et al. Temporal and sequential changes of glial cells and cytokine expression during neuronal degeneration after transient global ischemia in rats. J Neuroinflam 2011;8:70-80.
51. Khoshnam SE, Sarkaki A, Rashno M, Farbood Y. Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: neuroprotective role of vanillic acid. Life Sci 2018; 211:126-132.
52. Chen S, Yin Z-J, Jiang C, Ma Z-Q, Fu Q, Qu R, et al. Asiaticoside attenuates memory impairment induced by transient cerebral ischemia–reperfusion in mice through anti-inflammatory mechanism. Pharmacol Biochem Behav 2014; 122:7-15.
53. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med 2017;17:47-56.
54. Chen P, Chen F, Zhou B. Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose. Sci Rep 2018; 8:1465-1474.
55. Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song X-yR, et al. Tumor necrosis factor-α neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2005;25:959-967.
56. Vakili A, Mojarrad S, Akhavan MM, Rashidy-Pour A. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 2011; 1377:119-125.
57. Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF‐κB, iNOS, COX‐2, TNF‐α, and IL‐6 in 1, 2‐dimethylhydrazine‐induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 2010; 107:650-655.
58. Garg A, Aggarwal B. Nuclear transcription factor-κB as a target for cancer drug development. Leukemia 2002;16:1053-1068.
59. Liu HP, Ren TW, Yan WJ, Liu J, Liu RB. Ellagic acid alleviates inflammatory pain and paclitaxel-induced neuropathic pain in murine models. Int J Clin Exp Med 2016; 9:12514-12520.