1. Ramage AG, Villalón CM. 5-hydroxytryptamine and cardiovascular regulation. Trend Pharmacol Sci 2008; 29:472-481.
2. Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev 2012; 64:359-388.
3. Mohammad‐Zadeh L, Moses L, Gwaltney‐Brant S. Serotonin: a review. J Vet Pharmacol Ther 2008; 31:187-199.
4. Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994; 74:323-364.
5. McCALL RB, Clement ME. Role of serotonin1A and serotonin2 receptors in the central regulation of the cardiovascular system. Pharmacol Rev 1994; 46:231-243.
6. Scrogin KE, Johnson AK, Brooks VL. Methysergide delays the decompensatory responses to severe hemorrhage by activating 5-HT1A receptors. Am J Physiol Regul Integ Comparat Physiol 2000; 279:1776-1786.
7. Dean C, Bago M. Renal sympathoinhibition mediated by 5-HT1Areceptors in the RVLM during severe hemorrhage in rats. Am J Physiol Regul Integ Comparat Physiol 2002; 282:122-130.
8. Bago M, Dean C. Sympathoinhibition from ventrolateral periaqueductal gray mediated by 5-HT1A receptors in the RVLM. Am J Physiol Regul Integ Comparat Physiol 2001; 280:976-984.
9. Gioia M, Bianchi R. The cytoarchitecture of the nucleus cuneiformis. A Nissl and Golgi study. J Anat 1987; 155:165-176.
10. Lam W, Gundlach AL, Verberne AJ. Increased nerve growth factor inducible-A gene and c-fos messenger RNA levels in the rat midbrain and hindbrain associated with the cardiovascular response to electrical stimulation of the mesencephalic cuneiform nucleus. Neurosci 1996; 71:193-211.
11. Allen LF, Inglis WL, Winn P. Is the cuneiform nucleus a critical component of the mesencephalic locomotor region? An examination of the effects of excitotoxic lesions of the cuneiform nucleus on spontaneous and nucleus accumbens induced locomotion. Brain Res Bull 1996; 41:201-210.
12. Verberne AJ, Lam W, Owens NC, Sartor D. Supramedullary modulation of sympathetic vasomotor function. Clin Exp Pharmacol Physiol 1997; 24:748-754.
13. Pose I, Sampogna S, Chase MH, Morales FR. Cuneiform neurons activated during cholinergically induced active sleep in the cat. J Neurosci 2000; 20:3319-3327.
14. Zemlan FP, Behbehani MM. Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 1988; 453:89-102.
15. Korte SM, Jaarsma D, Luiten PGM, Bohus B. Mesencephalic cuneiform nucleus and its ascending and descending projections serve stress-related cardiovascular responses in the rat. J Auton Nerv Syst 1992; 41:157-176.
16. Lam W, Verberne AJ. Cuneiform nucleus stimulation-induced sympathoexcitation: role of adrenoceptors, excitatory amino acid and serotonin receptors in rat spinal cord. Brain Res 1997; 757:191-201.
17. Shafei MN, Nasimi A. Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: Role of the pontine Kolliker-Fuse nucleus. Brain Res 2011; 1385:135-143.
18. Shafei MN, Niazmand S, Hosseini M, Daloee MH. Pharmacological study of cholinergic system on cardiovascular regulation in the cuneiform nucleus of rat. Neurosci Lett 2013; 549:12-7.
19. Farrokhi E, Shafei MN, Khajavirad A, Hosseini M, Bideskan ARE. Role of the nitrergic system of the cuneiform nucleus in cardiovascular responses in Urethane-Anesthetized male rats. Iran J Med Sci 2017; 42:473-478.
20. Ahlgren J, Porter K, Hayward LF. Hemodynamic responses and c-Fos changes associated with hypotensive hemorrhage: standardizing a protocol for severe hemorrhage in conscious rats. Am J Physiol Regul Integ Comparat Physiol 2007; 292:1862-1871.
21. Buller KM, Smith DW, Day TA. NTS catecholamine cell recruitment by hemorrhage and hypoxia. Neurorep 1999; 10:3853-3856.
22. Thrivikraman KV, Bereiter DA, Gann DS. Catecholamine activity in paraventricular hypothalamus after hemorrhage in cats. Am J Physiol Regul Integ Comparat Physiol 1989; 257:370-376.
23. Lam W, Gundlach AL, Verberne AJ. Neuronal activation in the forebrain following electrical stimulation of the cuneiform nucleus in the rat: hypothalamic expression of c-fos and NGFI-A messenger RNA. Neurosci 1997; 78:1069-1085.
24. Luna-Munguia H, Manuel-Apolinar L, Rocha L, Meneses A. 5-HT 1A receptor expression during memory formation. Psychopharmacol 2005; 181:309-318.
25. Shafei MN, Nikyar T, Hosseini M, Niazmand S, Paseban M. Cardiovascular effects of nitrergic system of the pedunculopontine tegmental nucleus in anesthetized rats. Iran J Basic Med Sci 2017; 20:776-781.
26. Paxinos G, Watson C. The rat brain in stereotaxix coordinates. Qingchuan Zhuge translate 2005;32: 98-106.
27. Pasandi H, Abbaspoor S, Shafei MN, Hosseini M, Khajavirad A. GABAA receptor in the Pedunculopontine tegmental (PPT) nucleus: Effects on cardiovascular system. Pharmacol Rep 2018; 70:1001-1009.
28. Helke C, McDonald C, Phillips E. Hypotensive effects of 5-HT1A receptor activation: ventral medullary sites and mechanisms of action in the rat. J Auton Nerv Syst 1993; 42:177-188.
29. Miyawaki T, Goodchild AK, Pilowsky PM. Rostral ventral medulla 5-HT1A receptors selectively inhibit the somatosympathetic reflex. Am J Physiol Regul Integ Comparat Physiol 2001; 280:1261-1268.
30. Verberne AJ. Cuneiform nucleus stimulation produces activation of medullary sympathoexcitatory neurons in rats. Am J Physiol 1995; 268:752-758.
31. Behbehani MM, Zemlan FP. Response of nucleus raphe magnus neurons to electrical stimulation of nucleus cuneiformis: role of acetylcholine. Brain Res 1986; 369:110-118.
32. Richter R, Behbehani M. Evidence for glutamic acid as a possible neurotransmitter between the mesencephalic nucleus cuneiformis and the medullary nucleus raphe magnus in the lightly anesthetized rat. Brain Res 1991; 544:279-286.
33. Portas CM, Thakkar M, Rainnie D, McCarley RW. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 1996; 16:2820-2828.