Wi-Fi (2.4 GHz) affects anti-oxidant capacity, DNA repair genes expression and apoptosis in pregnant mouse placenta

Document Type : Original Article


1 Maternal Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Human Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran


Objective(s): The placenta provides nutrients and oxygen to embryo and removes waste products from embryo’s blood. As far as we know, the effects of exposure to Wi-Fi (2.4 GHz) signals on placenta have not been evaluated. Hence, we examined the effect of prenatal exposure to Wi-Fi signals on anti-oxidant capacity, expressions of CDKNA1, and GADD45a as well as apoptosis in placenta and pregnancy outcome.
Materials and Methods: Pregnant mice were exposed to Wi-Fi signal (2.4 GHz) for 2 and 4 hr. Placenta tissues were examined to measure the MDA and SOD levels. To measure SOD, CDKNA1, GADD45a, Bax, and Bcl-2 expressions were compared by real-time PCR analysis. TUNEL assay was used to assess apoptosis in placenta tissues. The results were analyzed by one-way analysis of variance (ANOVA) using Prism version 6.0 software.
Results: MDA and SOD levels had significantly increased in exposed Wi-Fi signal groups (P-value< 0.05). Also, quantitative PCR experiment showed that SOD mRNA expression significantly increased in Wi-Fi signal groups. The data showed that CDKN1A and GADD45a genes were increased in Wi-Fi groups (P-value<0.05). The quantitative PCR and the TUNEL assay showed that apoptosis increased in Wi-Fi groups (P-value<0.05).
Conclusion: Our results provide evidence that Wi-Fi signals increase lipid peroxidation, SOD activity (oxidative stres), apoptosis and CDKN1A and GADD45a overexpression in mice placenta tissue. However, further experimental studies are warranted to investigate other genes and aspects of pregnancy to determine the role of Wi-Fi radiation on fertility and pregnancy.


1. Gul A, Çelebi H, Uğraş S. The effects of microwave emitted by cellular phones on ovarian follicles in rats. Arch Gynecol Obstet 2009;280:729-733.
2. Esmekaya MA, Ozer C, Seyhan N. 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gen Physiol Biophys 2011;30:84-89.
3. Foster KR, Glaser R. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys 2007;92:609-620.
4. Peyman A, Khalid M, Calderon C, Addison D, Mee T, Maslanyj M, et al. Assessment of exposure to electromagnetic fields from wireless computer networks (wi-fi) in schools; results of laboratory measurements. Health Phys 2011;100:594-612.
5. Çelik Ö, Kahya MC, Nazıroğlu M. Oxidative stress of brain and liver is increased by Wi-Fi (2.45 GHz) exposure of rats during pregnancy and the development of newborns. J Chem Neuroanat 2016;75:134-139.
6. Shokri S, Soltani A, Kazemi M, Sardari D, Mofrad FB. Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: a time course study. Cell J 2015;17:322-331.
7. Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health 2007;23:411-420.
8. Tök L, Nazıroğlu M, Doğan S, Kahya MC, Tök Ö. Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian J Ophthalmol 2014;62:12-15.
9. Fu H, Song W, Wang Y, Deng W, Tang T, Fan W, et al. Radiosensitizing effects of Sestrin2 in PC3 prostate cancer cells. Iran J Basic Med Sci 2018;21:621-624.
10.    E Tamura R, F de Vasconcellos J, Sarkar D, A Libermann T, B Fisher P, F Zerbini L. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 2012;12:634-651.
11.    Biswas K, Sarkar S, Du K, Brautigan DL, Abbas T, Larner JM. The E3 ligase CHIP mediates p21 degradation to maintain radioresistance. Mol Cancer Res 2017;15:651-659.
12.    Gosselin M-C, Vermeeren G, Kuhn S, Kellerman V, Benkler S, Uusitupa TM, et al. Estimation formulas for the specific absorption rate in humans exposed to base-station antennas. T-EMC 2011;53:909-922.
13.    Lunec J. Free radicals: their involvement in disease processes. Ann. Clin. Biochem 1990;27:173-182.
14.    Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 1998;35:184-188.
15.    Bisht KS, Pickard WF, Meltz ML, Roti Roti JL, Moros EG. Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847.74 MHz, CDMA). Radiat Res 2001;156:430-432.
16.    Roti Roti J, Malyapa R, Bisht K, Ahern E, Moros E, Pickard W, et al. Neoplastic transformation in C3H 10T½ cells after exposure to 835.62 MHz FDMA and 847.74 MHz CDMA radiations. Radiat Res 2001;155:239-247.
17.    Takashima Y, Hirose H, Koyama S, Suzuki Y, Taki M, Miyakoshi J. Effects of continuous and intermittent exposure to RF fields with a wide range of SARs on cell growth, survival, and cell cycle distribution. Bioelectromagnetics 2006;27:392-400.
18.    Heynick LN, Merritt JH. Radiofrequency fields and teratogenesis. Bioelectromagnetics 2003;24:174-186.
19.    Stolzenberg SJ, Torbit CA, Edmonds PD, Taenzer JC. Effects of ultrasound on the mouse exposed at different stages of gestation: acute studies. Radiat Environ Biophys 1980;17:245-270.
20.    Takahashi S, Imai N, Nabae K, Wake K, Kawai H, Wang J, et al. Lack of adverse effects of whole-body exposure to a mobile telecommunication electromagnetic field on the rat fetus. Radiat Res 2009;173:362-372.
21.    Vijayalaxmi, Scarfi M. International and national expert group evaluations: biological/health effects of radiofrequency fields. Int J Environ Res Public Health 2014;11:9376-9408.
22.    Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril 2009;92:1318-1325.
23.    Schoots MH, Gordijn SJ, Scherjon SA, van Goor H, Hillebrands J-L. Oxidative stress in placental pathology. Placenta 2018; 69:153-161.
24.    Luo Q, Yang J, Zeng Q-L, Zhu X-M, Qian Y-L, Huang H-F. 50-Hertz electromagnetic fields induce gammaH2AX foci formation in mouse preimplantation embryos in vitro. Biol Reprod 2006;75:673-680.
25.    Glasser SR, Julian J, Munir MI, Soares MJ. Biological markers during early pregnancy: trophoblastic signals of the peri-implantation period. Environ Health Perspect 1987;74:129-147.
26.    McMillen IC, Adams MB, Ross JT, Coulter CL, Simonetta G, Owens JA, et al. Fetal growth restriction: adaptations and consequences. Reproduction 2001;122:195-204.
27.    Kaufmann P, Castellucci M. Extravillous trophoblast in the human placenta: a review. Placenta 1997;18:21-65.
28.    Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci 2018;19:1496.
29.    Xiong Y, Liebermann DA, Holtzman EJ, Jeronis S, Hoffman B, Geifman‐Holtzman O. Preeclampsia‐associated stresses activate Gadd45a signaling and sFlt‐1 in placental explants. J Cell Physiol 2013;228:362-370.
30.    Muschol-Steinmetz C, Friemel A, Kreis N-N, Reinhard J, Yuan J, Louwen F. Function of survivin in trophoblastic cells of the placenta. PLoS One 2013;8:e73337.
31.    Rane CK, Minden A. P21 activated kinases: structure, regulation, and functions. Small GTPases 2014;5:e28003.
32.    Zhan Q. Gadd45a, a p53-and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res 2005;569:133-143.
33.    Tan B, Tong C, Yuan Y, Xu P, Wen L, Zhang C, et al. The regulation of trophoblastic p53 homeostasis by the p38-Wip1 feedback loop is disturbed in placentas from pregnancies complicated by preeclampsia. Cell Physiol Biochem 2019;52:315-335.
34.    Sommer AM, Grote K, Reinhardt T, Streckert J, Hansen V, Lerchl A. Effects of radiofrequency electromagnetic fields (UMTS) on reproduction and development of mice: a multi-generation study. Radiat Res 2009;171:89-95.
35.    Lee H-J, Lee J-S, Pack J-K, Choi H-D, Kim N, Kim S-H, et al. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields. Radiat Res 2009;172:648-652.
36.    Wlodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci 2019;20: E1146.
37.    Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health 2015;12:65-72.
38.    Özkaya MO, Nazıroğlu M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil Steril 2010;94:2465-2466.
39.    Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep 2018;23:100-117.
40.    Yao K, Wu W, Wang K, Ni S, Ye P, Yu Y, et al. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol Vis 2008;14:964-969.
41.    Liu YX, Tai Jl, Li GQ, Zhang ZW, Xue JH, Liu HS, et al. Exposure to 1950-MHz TD-SCDMA electromagnetic fields affects the apoptosis of astrocytes via caspase-3-dependent pathway. PLoS One 2012;7:e42332.