Triiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts

Document Type : Original Article


1 Department of Orthopaedics,the First Affiliated Hospital of University of Science and Technology of China, #17 Lujiang Road, Hefei, Anhui, China

2 Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China

3 Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, #17 Lujiang Road, Hefei, Anhui, China

4 Department of Orthopaedics,The First Affiliated Hospital of University of Science and Technology of China, #17 Lujiang Road, Hefei, Anhui, China


Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.
Materials and Methods: The subchondral bone specimens were obtained from OA patients and healthy participants. The expressions of VEGF, HIF-1α, AKT, and phosphorylated AKT was detected by immunohistochemistry, Western blotting, and RT-qPCR in OA. Angiogenesis-related factor expression in OA osteoblasts was measured by treating different concentrations of T3. The hypoxia model and PX-478 (HIF-1α inhibitor) were employed to confirm the regulative role of HIF-1α for VEGF expression. The level of VEGF secretion was examined in osteoblasts supernatant using ELISA.   
Results: Immunohistochemistry showed strong staining of VEGF and HIF-1α in OA subchondral bone. The expression of VEGF, HIF-1α, and p-AKT in OA osteoblasts was higher than that of normal osteoblasts at protein and mRNA levels. The physiological concentration of T3 (10-7 M) in OA osteoblasts up-regulated the expression of VEGF, HIF-1α, and p-AKT after 24 hr and 48 hr culture, while a higher dose of T3 displayed the adverse effects. Additionally, VEGF and p-AKT expression was down-regulated when PX-478 inhibited HIF-1α protein.
Conclusion: Our results suggested that local T3 could effectively increase angiogenesis-related factor expression by PI3K/AKT signaling pathway, and HIF-1α regulated the VEGF expression in OA osteoblasts.


1. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, Hawker GA, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr  Cartilage 2014; 22:363-388.
2. Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone 2012; 51:204-211.
3. Howell DS. Pathogenesis of osteoarthritis. Am J Med 1986; 80:24-28.
4. Valdes AM, Spector TD. The genetic epidemiology of osteoarthritis. Curr Opin Rheumatol 2010; 22:139-143.
5. Findlay DM, Atkins GJ. Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep 2014; 12:127-134.
6. Amin AK, Huntley JS, Simpson AH, Hall AC. Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J Bone Joint Surg Br 2009; 91:691-699.
7. Polverini PJ. The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 1995; 6:230-247.
8. Murata M, Yudoh K, Masuko K. The potential role of vascular endothelial growth factor (VEGF) in cartilage - How the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthr Cartilage 2008; 16:279-286.
9. Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, Weinberg JB. Oxygen, nitric oxide and articular cartilage. Eur Cell Mater 2007; 13:56-65.
10. Grimshaw MJ, Mason RM. Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthr Cartilage 2001; 9:357-364.
11. Fernandez-Torres J, Zamudio-Cuevas Y, Martinez-Nava GA, Lopez-Reyes AG. Hypoxia-Inducible Factors (HIFs) in the articular cartilage: a systematic review. Eur Rev Med Pharmacol Sci 2017; 21:2800-2810.
12. Sartori-Cintra AR, de Mara CS, Argolo DL, Coimbra IB. Regulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression by interleukin-1 beta (IL-1 beta), insulin-like growth factors I (IGF-I) and II (IGF-II) in human osteoarthritic chondrocytes. Clinics 2012; 67:35-40.
13.    Coimbra IB, Jimenez SA, Hawkins DF, Piera-Velazquez S, Stokes DG. Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes. Osteoarthr Cartilage  2004; 12:336-345.
14. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12:5447-5454.
15. Zhang LQ, Cooper-Kuhn CM, Nannmark U, Blomgren K, Kuhn HG. Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro. J Cerebr Blood F Met 2010; 30:323-335.
16. Waung JA, Bassett JH, Williams GR. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab 2012; 23:155-1562.
17. Moeller LC, Dumitrescu AM, Walker RL, Meltzer PS, Refetoff S. Thyroid hormone responsive genes in cultured human fibroblasts. J Clin Endocr Metab 2005; 90:936-943.
18.  Altman RD. Criteria for classification of clinical osteoarthritis. J Rheumatol Suppl 1991; 27:10- 12.
19. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D. Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998; 41:891-899.
20. Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12:632-644.
21. Pan J, Wang B, Li W, Zhou XZ, Scherr T, Yang YY. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 2012; 51:212-217.
22. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 2013; 24:297-310.
23. Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr Cartilage 2014; 22:1077-1089.
24. Varga F, Rumpler M, Zoehrer R, Turecek C, Spitzer S, Thaler R. T3 affects expression of collagen I and collagen cross-linking in bone cell cultures. Biochem Biophys Res Commun 2010; 402:180-185.
25.     Williams GR. Thyroid hormone actions in cartilage and bone. Eur Thyroid J 2013; 2:3-13.
26.     Silva JF, Ocarino NM, Serakides R. In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells. Placenta 2015; 36:97-99.
27.     Silva JF, Ocarino NM, Serakides R. Maternal thyroid dysfunction affects placental profile of inflammatory mediators and the intrauterine trophoblast migration kinetics. Reproduction 2014; 147: 803-816.
28. Moretto FC, De Sibio MT, Luvizon AC, Olimpio RM, de Oliveira M, Alves CA. Triiodothyronine (T3) induces HIF1A and TGFA expression in MCF7 cells by activating PI3K. Life Sci 2016; 154:52-57.
29.    Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999; 13:2905-2927.
30. Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio N, Tamborini E. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: A review of current evidences and future perspectives. Cancer Treat Rev 2019; 72:45-55.
31. Fernandez-Torres J, Hernandez-Diaz C, Espinosa-Morales R, Camacho-Galindo J, Galindo-Sevilla NDC, Lopez-Macay A. Polymorphic variation of hypoxia inducible factor-1 A (HIF1A) gene might contribute to the development of knee osteoarthritis: a pilot study. BMC Musculoskel Dis 2015; 16:218-224.
32. Sakamoto J, Origuchi T, Okita M, Nakano J, Kato K, Yoshimura T. Immobilization-induced cartilage degeneration mediated through expression of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and chondromodulin-I. Connect Tissue Res 2009; 50:37-45.
33. Stegen S, Laperre K, Eelen G, Rinaldi G, Fraisl P, Torrekens S. HIF-1alpha metabolically controls collagen synthesis and modification in chondrocytes. Nature 2019; 565:511-515.
34.    Dhole B, Gupta S, Venugopal SK, Kumar A. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1alpha in murine Leydig cells. Syst Biol Reprod Med 2018; 64:191-201.
35. Zamoner A, Barreto KP, Filho DW, Sell F, Woehl VM, Guma FC. Propylthiouracil-induced congenital hypothyroidism up-regulates vimentin phosphorylation and depletes antioxidant defenses in immature rat testis. J Mol Endocrinol 2008; 40:125-135.