1. Stotts AL, Dodrill CL, Kosten TR. Opioid dependence treatment: options in pharmacotherapy. Expert Opin Pharmacother 2009; 10:1727-1740.
2. Maremmani I, Pacini M, Cesaroni C, Lovrecic M, Perugi G, Tagliamonte A. QTc interval prolongation in patients on long-term methadone maintenance therapy. Eur Addict Res 2004; 11:44-49.
3. Ghayur MN, Gilani AH, Janssen LJ. Intestinal, airway, and cardiovascular relaxant activities of thymoquinone. Evid Based Complement Alternat Med 2012; 2012:1-13.
4. Nutten S, Philippe D, Mercenier A, Duncker. Opioid receptors stimulating compounds (thymoquinone, nigella sativa) and food allergy: United states patent application no. 13/321,060.
5. Ahmad NZ, Mat KC, Mohamad N, Husain RB, Bakar NH, Zakaria NH, et al. A review on opioid dependence, mechanism and treatments used: option of treatments: modern versus alternative medicine. Bangladesh J Med Sci 2019; 18:171-177.
6. Shahraki S, Khajavirad A, Shafei MN, Mahmoudi M, Tabasi NS. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines. J Tradit Complement Med 2015; 6:89-96.
7. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci 2014; 17:1007-1011.
8. Sangi S, Ahmed SP, Channa MA, Ashfaq M, Mastoi SM. A new and novel treatment of opioid dependence: Nigella sativa 500 mg. J Ayub Med Coll Abbottabad 2008; 20:118-124.
9. Linjawi SA, Khalil WK, Hassanane MM, Ahmed ES. Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats. Arch Med Sci 2015; 11:220-229.
10. Hosseinzadeh H, Parvardeh S, Nassiri-Asl M, Mansouri MT. Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med Sci Monit 2005; 11: 106-110.
11. Javidi S, Razavi BM, Hosseinzadeh H. A review of neuropharmacology effects of Nigella sativa and its main component, thymoquinone. Phytother Res 2016; 30:1219-1229.
12. Abdel-Zaher AO, Mostafa MG, Farghly HM, Hamdy MM, Omran GA, Al-Shaibani NK. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur J Pharmacol 2013; 702:62-70.
13. Tabatabai SM, Dashti S, Doosti F, Hosseinzadeh H. Phytotherapy of opioid dependence and withdrawal syndrome: a review. Phytother Res 2014; 28:811-830.
14. Mohamad N, Bakar N, Musa N, Talib N, Ismail R. Better retention of Malaysian opiate dependents treated with high dose methadone in methadone maintenance therapy. Harm Reduct J 2010; 7:30-38.
15. Zhang L, Chow EP, Zhuang X, Liang Y, Wang Y, Tang C, et al. Methadone maintenance treatment participant retention and behavioural effectiveness in China: a systematic review and meta-analysis. Plos One 2013; 8:68906-68916.
16. Yang F, Lin P, Li Y, He Q, Long Q, Fu X, et al. Predictors of retention in community-based methadone maintenance treatment program in Pearl River Delta, China. Harm Reduct J 2013;10:3-10.
17. Adnan LMA, Mohamad N, Bakar NHA. Opioid dependent and substitution therapy: thymoquinone as potential novel supplement therapy for better outcome for mmt substitution therapy. Iran J Basic Med Sci 2014; 17:926-928.
18. Hosseinzadeh H, Parvardeh S, Masoudi A, Moghimi M, Mahboobifard F. Attenuation of morphine tolerance and dependence by thymoquinone in mice. Avicenna J Phytomed 2016; 6:55-66.
19. Adnan LHM, Mohamad N, Mat KC, Yeo CC, Bakar NH, Ismail R. Thymoquinone regulates gene expression levels in morphine addiction pathways in opioid receptor expressing cells (U87 MG). Electronic J Biol 2017; 13:166-173.
20. Liyana HMA, Nasir M, Khairi CM, Nor Hidayah AB, Siti NH, Mohd HM et al. Attenuation of morphine-induced cAMP overshoot by thymoquinone in opioid receptor expressing cells (u87 mg) mediated by chronic morphine treatment. J Eng Appl Sci 2018; 13:8906-8911.
21. Nestler EJ. Molecular mechanisms of drug addiction. Neuropharmacology 2004; 47:24-32.
22. Jalili C, Sohrabi M, Jalili F, Salahshoor MR. Assessment of thymoquinone effects on apoptotic and oxidative damage induced by morphine in mice heart. Cell Mol Biol 2018; 64:33-38.
23. Jalili C, Salahshoor MR, Hoseini M, Roshankhah S, Sohrabi M, Shabanizadeh A. Protective effect of thymoquinone against morphine injuries to kidneys of mice. Iran J Kidney Dis 2017; 11:142-150.
24. Md Fauzi NF, Bakar NH, Mohamad N, Mat KC, Omar SH, Othman M, et al. Potential therapeutic effects of thymoquinone on treatment of amphetamine abuse. Asian Pac J Trop Biomed 2018; 8:187-188.
25. Schrantee A, Vaclav L, Heijtel DF, Caan MWA, Gsell W, Lucassen PJ, et al. Dopaminergic system dysfunction in recreational dexamphetamine users. Neuropsychopharmacol 2015; 40:1172-1180.
26. Ciccarone D. Stimulant abuse: Pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim Care 2011; 38:41-58.
27. Norliza C, Norni A, Anandjit S, Mohd FM. A review of substance abuse research in Malaysia. Med Journal Malays 2014; 69:55-58.
28. Ashok AH, Mizuno Y, Volkow ND, Howes OD. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: A systematic review and meta-analysis. JAMA Psychiatry 2017; 74:511-519.
29. Mustafa NS, Bakar NH, Adnan LH, Fauzi NF, Thoarlim A, Omar SH, et al. Protective effects of thymoquinone on the MDMA-induced cerebrospinal fluid serotonin depletion in rats. Transylv Rev 2018; 1:1.