Point-of-care detection of Escherichia coli O157:H7 in water using AuNPs-based aptasensor

Document Type : Original Article


1 Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

2 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): Access to safe drinking and irrigation water has always been one of the major human concerns worldwide. Thus, rapid, sensitive, and inexpensive approaches for pathogenic bacteria detection, such as Escherichia coli O157:H7 (EHEC) that can induce important infectious diseases, are highly on demand.
Materials and Methods: In this study, a sensitive aptamer-based AuNPs bioassay was developed that demonstrated its potential to detect EHEC. In the presence of the target bacterium, the specific adsorbed aptamer, leaves AuNPs surface and interacts with EHEC. The bare nanoparticles aggregate in the presence of NaCl and the color shifts from red to purple and blue depending on the bacterial concentration.
Results: The proposed aptasensor exhibited a good linear response over a wide concentration range of 876 to 107 CFU/ml and was closely correlated with the line equation of “y=0.0094x+0.0006” (R2= 0.9861). It also showed a low detection limit (LOD) of 263 CFU/ml (Signal/Noise=3). No response was recorded in the presence of other tested bacterial strains including Listeria monocytogenes and Salmonella typhi, indicating the high selectivity of the aptasensor.
Conclusion: This biosensor may be used as a smart device to screen water reservoirs and prevents the outbreak of EHEC-related life-threatening contagious diseases.


1. Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, et al. Aptamer-based technologies in foodborne pathogen detection. Front Microbiol 2016; 7:1-11.
2. Amaya-González S, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Aptamer-based analysis: A promising alternative for food safety control. Sensors (Basel) 2013; 13:16292-16311.
3. Zahedi Bialvaei A, Sheikhalizadeh V, Mojtahedi A, Irajian G. Epidemiological burden of Listeria monocytogenes in Iran. Iran J Basic Med Sci 2018; 21:770-780.
4. Singh G, Manohar M, Adegoke AA, Stenström TA, Shanker R. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update. J Nanopart Res 2017; 19.
5. WHO. Water sanitation hygiene: Water-related diseases. 2019; Web: https://www.who.int/water_sanitation_health/diseases-risks/diseases/diarrhoea/en/
6. Singh P, Gupta R, Sinha M, Kumar R, Bhalla V. MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 2016; 183:1501-1506.
7. Wu W, Zhang J, Zheng M, Zhong Y, Yang J, Zhao Y, et al. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS One 2012; 7:1-9.
8. Mirani ZA, Fatima A, Urooj S, Aziz M, Khan MN, Abbas T. Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iran J Basic Med Sci 2018; 21:760-769.
9. Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual FX, et al. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7. Sensor Actuat B-Chem 2018; 255:2988-2995.
10.    Lee YJ, Han SR, Maeng JS, Cho YJ, Lee SW. In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem Biophys Res Commun 2012; 417:414-420.
11.    Chung J, Kang JS, Jurng JS, Jung JH, Kim BC. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens Bioelectron 2015; 67:303-308.
12.    Li H, Ding X, Peng Z, Deng L, Wang D, Chen H, et al. Aptamer selection for the detection of Escherichia coli k88. Can J Microbiol 2011; 57:453-459.
13.    Wu W, Zhao S, Mao Y, Fang Z, Lu X, Zeng L. A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal Chim Acta 2015; 861:62-68.
14.    Liu K, Yan X, Mao B, Wang S, Deng L. Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 2016; 183:643-649.
15.    Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2016; 42:847-865.
16.    Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 2015; 182:917-923.
17.    Sekhon SS, Kim SG, Lee SH, Jang A, Min J, Ahn JY, et al. Advances in pathogen-associated molecules detection using aptamer based biosensors. Mol Cell Toxicol 2013; 9:311-317.
18.    Soheili V, Taghdisi SM, Hassanzadeh Khayyat M, Fazly Bazzaz BBS, Ramezani M, Abnous K. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Microchim Acta 2016; 183:1687-1697.
19.    Sheikhzadeh E, Chamsaz M, Turner APF, Jager EWH, Beni V. Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens Bioelectron 2016; 80:194-200.
20.    Shahdordizadeh M, Taghdisi SM, Ansari N, Alebooye Langroodi F, Abnous K, Ramezani M. Aptamer based biosensors for detection of Staphylococcus aureus. Sensor Actuat B-Chem 2017; 241:619-635.
21.    Bruno JG, Chanpong J. Methods of producing competitive aptamer fret reagents and assays. Google Patents; 2008.
22.    Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 2006; 1:246-252.
23.    Wei H, Li B, Li J, Wang E, Dong S. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun (Camb) 2007; Sep 28:3735-3737.
24.    Demirkol DO, Timur S. A sandwich-type assay based on quantum dot/aptamer bioconjugates for analysis of E. Coli O157:H7 in microtiter plate format. Int J Polym Mater Po 2016; 65:85-90.
25.    Yildirim N, Long F, Gu AZ, editors. Aptamer based E. coli detection in waste waters by portable optical biosensor system. 40th Annual Northeast Bioengineering Conference (NEBEC); 2014.
26.    Sassolas A, Blum LJ, Leca-Bouvier BD. Optical detection systems using immobilized aptamers. Biosens Bioelectron 2011; 26:3725-3736.
27.    Hong KL, Sooter LJ. Single-stranded DNA aptamers against pathogens and toxins: identification and biosensing applications. Biomed Res Int 2015; 2015:1-31.
28.    Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 2011; 63:1361-1370.
29.    Gopinath SCB, Lakshmipriya T, Awazu K. Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 2014; 51:115-123.
30.    Derbyshire N, White SJ, Bunka DHJ, Song L, Stead S, Tarbin J, et al. Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal Chem 2012; 84:6595-6602.
31.    Li L, Li B, Qi Y, Jin Y. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 2009; 393:2051-2057.
32.    Tan L, Neoh KG, Kang ET, Choe WS, Su X. Affinity analysis of DNA aptamer-peptide interactions using gold nanoparticles. Anal Biochem 2012; 421:725-731.
33.    Kim HS, Kim YJ, Chon JW, Kim DH, Yim JH, Kim H, et al. Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sensor Actuat B-Chem 2017; 239:94-99.
34.    Wu WH, Li M, Wang Y, Ouyang HX, Wang L, Li XC, et al. Aptasensors for rapid detection of Escherichia coli O157: H7 and Salmonella typhimurium. Nanoscale Res Lett 2012; 7:658-664.
35.    Fatin MF, Rahim Ruslinda A, Gopinath SCB, Arshad MKM, Hashim U, Lakshmipriya T, et al. Co-ordinated split aptamer assembly and disassembly on gold nanoparticle for functional detection of HIV-1 tat. Process Biochem 2019; 79:32-39.
36.    Mondal B, Ramlal S, Lavu PS, Bhavanashri N, Kingston J. Highly sensitive colorimetric biosensor for Staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front Microbiol 2018; 9:1-8.
37.    Luan Y, Chen Z, Xie G, Chen J, Lu A, Li C, et al. Rapid visual detection of aflatoxin B1 by label-free aptasensor using unmodified gold nanoparticles. J Nanosci Nanotechnol 2015; 15: 1357-1361.
38.    Yang C, Wang Y, Marty JL, Yang X. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 2011; 26:2724-2727.
39.    Shahrokhian S, Ranjbar S. Aptamer immobilization on amino-functionalized metal-organic frameworks: An ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7. Analyst 2018; 143:3191-3201.
40.    Yu X, Chen F, Wang R, Li Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J Biotechnol 2018; 266:39-49.
41.    Khang J, Kim D, Chung KW, Lee JH. Chemiluminescent aptasensor capable of rapidly quantifying Escherichia coli O157:H7. Talanta 2016; 147:177-183.
42.    Renuka RM, Achuth J, Chandan HR, Venkataramana M, Kadirvelu K. A fluorescent dual aptasensor for the rapid and sensitive onsite detection of E. coli O157:H7 and its validation in various food matrices. New J Chem 2018; 42:10807-10817.
43.    Wang Q, Long M, Lv C, Xin S, Han X, Jiang W. Lanthanide-labeled fluorescent-nanoparticle immunochromatographic strips enable rapid and quantitative detection of Escherichia coli O157:H7 in food samples. Food Control 2020; 109:106894-106903.
44.    Bu SJ, Wang KY, Bai HS, Leng Y, Ju CJ, Wang CY, et al. Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157:H7. Microchim Acta 2019; 186:296-302.
45.    Mo X, Wu Z, Huang J, Zhao G, Dou W. A sensitive and regenerative electrochemical immunosensor for quantitative detection of Escherichia coli O157:H7 based on stable polyaniline coated screen-printed carbon electrode and rGO-NR-Au@Pt. Anal Methods 2019; 11:1475-1482.
46.    Kim TH, Hwang HJ, Kim JH. Ultra-fast on-site molecular detection of foodborne pathogens using a combination of convection polymerase chain reaction and nucleic acid lateral flow immunoassay. Foodborne Pathog Dis 2019; 16:144-151.
47.    Zhu C, Zhao G, Dou W. Core-shell red silica nanoparticles based immunochromatographic assay for detection of Escherichia coli O157:H7. Anal Chim Acta 2018; 1038:97-104.
48.    Mo X, Zhao G, Dou W. Electropolymerization of stable leucoemeraldine base polyaniline film and application for quantitative detection of Escherichia coli O157:H7. J Electro Mater 2018; 47:6507-6517.
49.    Hu J, Huang R, Wang Y, Wei X, Wang Z, Geng Y, et al. Development of duplex PCR-ELISA for simultaneous detection of Salmonella spp. and Escherichia coli O157: H7 in food. J Microbiol Methods 2018; 154:127-133.
50.    Pang B, Zhao C, Li L, Song X, Xu K, Wang J, et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal Biochem 2018; 542:58-62.
51.    Jin SA, Heo Y, Lin LK, Deering AJ, Chiu GTC, Allebach JP, et al. Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157:H7. Microchim Acta 2017; 184:4879-4886.
52.    Guo Q, Han JJ, Shan S, Liu DF, Wu SS, Xiong YH, et al. DNA-based hybridization chain reaction and biotin–streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA. Biosens Bioelectron 2016; 86:990-995.
53.    Tian F, Lyu J, Shi J, Tan F, Yang M. A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sensor Actuat B-Chem 2016; 225:312-318.
54.    Hassan ARHAA, de la Escosura-Muñiz A, Merkoçi A. Highly sensitive and rapid determination of Escherichia coli O157: H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens Bioelectron 2015; 67:511-515.
55.    Cho IH, Mauer L, Irudayaraj J. In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers. Biosens Bioelectron 2014; 57:143-148.
56.    Song C, Li J, Liu J, Liu Q. Simple sensitive rapid detection of Escherichia coli O157:H7 in food samples by label-free immunofluorescence strip sensor. Talanta 2016; 156-157:42-47.
57.    Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, et al. Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens Bioelectron 2007; 22:1368-1375.
58.    Liu X, Li RZ, Li L, Li WJ, Zhou CJ. Immunoanalysis of E. coli O157:H7 based on Au nanoparticles labelling antibody using SPR biosensor. Chem J Chinese U 2013; 34:1333-1338.
59.    Liu Y, Cao Y, Wang T, Dong Q, Li J, Niu C. Detection of 12 common food-borne bacterial pathogens by taq man real-time PCR using a single set of reaction conditions. Front Microbiol 2019; 10:1-9.