L-Carnitine potentiates the anti-inflammatory and antinociceptive effects of diclofenac sodium in an experimentally induced knee osteoarthritis rat model

Document Type : Original Article


1 Medical Physiology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt

2 Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt


Objective(s): The aim of the present research is to investigate the efficacy of L-carnitine (LC) as a complementary therapy to diclofenac sodium (Dic) treatment in a mono-iodoacetate (MIA) induced knee osteoarthritis (OA) rat model, with respect to pain relief and the underlying pathology.
Materials and Methods: Fifty adult male albino rats were randomly divided into five groups (n=10): Control, OA, OA/Dic, OA/LC, and OA/Dic+LC. Knee diameter and pain assessment tests were done weekly. After four weeks, serum malondialdehyde, reduced glutathione, interleukin 1-β, tumor necrosis factor-alpha, prostaglandin E2, and bone-specific alkaline phosphatase were measured. The injected knees were removed and processed for the histological and immunohistological study of matrix metalloproteinase-13 (MMP-13) and cyclooxygenase 2 (COX-2). Also, histological examination of dorsal root ganglia and calcitonin gene-related peptide (CGRP) expression in the spinal cord were assessed.
Results: Treatment with Dic and/or LC significantly reduced knee swelling, improved pain-related behaviors, inflammatory and oxidative stress markers, attenuated the MIA-mediated histopathological alteration in the knee joint, and down-regulated expression of MMP-13 and COX-2 in the knee joint. It, also, significantly reduced CGRP expression, compared with the OA group. Dic+LC showed a better effect in improving some parameters than each treatment alone.
Conclusion: LC plus Dic is a more effective therapy than Dic alone for OA treatment.


1. Prince MJ, Wu F, Guo Y, Robledo LM, O’Donnell M, Sullivan R, et al. The burden of disease in older people and implications for health policy and practice. Lancet 2015;385:549-562.
2. Mora JC, Przkora R, Cruz-Almeida Y. Knee osteoarthritis: pathophysiology and current treatment modalities. J Pain Res 2018;11:2189.
3. Feller AG, Rudman D. Role of carnitine in human nutrition. J Nutr. 1988; 118:541-547.
4. Eteraf-Oskouei T, Ghasemoghli H, Najafi M. Effects of L-carnitine on inflammatory parameters and angiogenesis in the rat air pouch model of inflammation. J Isfahan Med School 2017;35:807-813.
5. Surai PF. Antioxidant action of carnitine: molecular mechanisms and practical applications. EC Vet Sci 2015;2:66-84.
6. Ali SM, Okda AAK, Dessouky IS, Hewedy WA, Zahran NM, Alamrani BA-w. L-Carnitine ameliorates knee lesions in mono-iodoacetate induced osteoarthritis in rats. Alexandria J Med 2017;53:61-66.
7. Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res Ther 2011;13:211.
8. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J-P, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011;7:33.
9. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 2013;527:440-447.
10. Li X, Kim J-S, Van Wijnen AJ, Im H-J. Osteoarthritic tissues modulate functional properties of sensory neurons associated with symptomatic OA pain. Mol Biol Rep 2011;38:5335-5339.
11. Sun R-Q, Tu Y-J, Lawand NB, Yan J-Y, Lin Q, Willis WD. Calcitonin gene-related peptide receptor activation produces PKA-and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 2004;92:2859-2866.
12. Bendele AM. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 2001;1:363-376.
13. O’Brien M, Philpott HT, McDougall JJ. Understanding osteoarthritis pain through animal models. Clin Exp Rheumatol 2017;35:S47-S52.
14. Kobayashi K, Imaizumi R, Sumichika H, Tanaka H, Goda M, Fukunari A, et al. Sodium iodoacetate-induced experimental osteoarthritis and associated pain model in rats. J Vet Med Sci 2003;65:1195-1199.
15. Kim WK, Chung H-J, Pyee Y, Choi TJ, Park HJ, Hong JY, et al. Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats. Chin Med 2016;11:17.
16. Adães S, Mendonça M, Santos TN, Castro-Lopes JM, Ferreira-Gomes J, Neto FL. Intra-articular injection of collagenase in the knee of rats as an alternative model to study nociception associated with osteoarthritis. Arthritis Res Ther 2014;16:R10.
17. Ferreira-Gomes J, Adães S, Castro-Lopes JM. Assessment of movement-evoked pain in osteoarthritis by the knee-bend and CatWalk tests: a clinically relevant study. J Pain 2008;9:945-954.
18. Otis C, Gervais J, Guillot M, Otis C, Gervais J, Guillot M, et al. Concurrent validity of different functional and neuroproteomic pain assessment methods in the rat osteoarthritis monosodium iodoacetate (MIA) model. Arthritis Res Ther 2016;18:150.
19. Lee JS, Bruce CR, Spriet LL, Hawley JA. Interaction of diet and training on endurance performance in rats. Exp Physiol 2001;86:499-508.
20. Copp SW, Davis RT, Poole DC, Musch TI. Reproducibility of endurance capacity and VO2 peak in male Sprague-Dawley rats. J Appl Physiol 2009;106:1072-1078.
21. Kumar A, Bendele AM, Blanks RC, Bodick N. Sustained efficacy of a single intra-articular dose of FX006 in a rat model of repeated localized knee arthritis. Osteoarthritis Cartilage 2015;23:151-160.
22. Mankin HJ, DORFMAN H, Lippiello L, ZARINS A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971;53:523-537.
23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25:402-408.
24. Bianchi E, Mannelli LDC, Menicacci C, Lorenzoni P, Aglianò M, Ghelardini C. Prophylactic role of acetyl-l-carnitine on knee lesions and associated pain in a rat model of osteoarthritis. Life Sci 2014;106:32-39.
25. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, A. Van De Putte LB, et al.Cyclooxygenase in biology and disease. FASEB J 1998;12:1063-1073.
26. Tastekin N, Aydogdu N, Dokmeci D, Usta U, Birtane M, Erbas H, et al.  Protective effects of L-carnitine and alpha-lipoic acid in rats with adjuvant arthritis. Pharmacol Res 2007;56:303-310.
27. Hua X, Deng R, Zhang Z, Su Z, De-Quan L, Pflugfelder SC. L-Carnitine suppresses the production of pro-inflammatory cytoiknes by preventing the hyperosmolarity-induced oxidative stress in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2014;55:3058.
28. Dearmin MG, Trumble TN, García A, Chambers JN, Budsberg SC.  Chondroprotectiveeffects of zoledronic acid on articular cartilage in dogs with experimentally induced osteoarthritis. Am J Vet Res 2014;75:329-337.
29. Kadhem MA. Anti-Arthritic activity of ethanolic extract of Lawsonia inermis in Freund ҆S adjuvant induced arthritic rats.IOSR J Agric Vet Sci 2016;9:1-6.
30. Hooshmand S, Balakrishnan A, Clark RM, Owen KQ, Koo SI, Arjmandi BH. Dietary l-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats. Phytomedicine 2008;15:595-601.
31. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int 2007;27:339-344.
32. Pathak NN, Balaganur V, Lingaraju MC, Kant V, Kumar D, Kumar D, et al. Effect of atorvastatin, a HMG-CoA reductase inhibitor in monosodium iodoacetate-induced osteoarthritic pain: implication for osteoarthritis therapy. Pharmacol Rep 2015;67:513-519.
33. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016;1862:576-591.
34. Thakur M, Rahman W, Hobbs C, Dickenson AH, Bennett DLH. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PloS One 2012;7:e33730.
35. Schou WS, Ashina S, Amin FM, Goadsby PJ, Ashina M. Calcitonin gene-related peptide and pain: a systematic review. J Headache Pain 2017;18:34.
36. Xiong W, Huang L, Shen Y, Guan S, He L, Tong Z, et al. Effects of lncRNA uc. 48+ siRNA on the release of CGRP in the spinal cords of rats with diabetic neuropathic pain. Int J Clin Exp Pathol 2017;10:9960-9969.
37. Vellani V, Moschetti G, Franchi S, Giacomoni C, Sacerdote P, Amodeo G. Effects of NSAIDs on the release of calcitonin gene-related peptide and prostaglandin E2 from Rat trigeminal Ganglia. Mediators Inflamm 2017;2017:9547056.