The first report of Enterobacter gergoviae carrying blaNDM-1 in Iran

Document Type : Original Article


Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran


Objective(s): Prompt detection of extended-spectrum β-lactamases (ESBL) and carbapenemase-producing enterobacteriaceae is crucial for infection prevention and control strategies. The present study aimed to characterize the ESBL and carbapenemase genes among Enterobacter isolates from an Iranian inpatient population.
Materials and Methods: A total of 96 Enterobacter isolates obtained from inpatients between June 2016 and March 2017, were identified by the conventional microbiological methods and diagnostic kits. Antimicrobial susceptibility pattern was performed using the disk diffusion method. The ESBL and carbapenemase genes were screened using polymerase chain reaction (PCR).
Results: All clinical isolates of Enterobacter were classified as E. gergoviae (52, 54.2%), E. aerogenes (34, 35.4%), E. cloacae (7, 7.3%), Cronobacter (E). sakazakii (3, 3.1%). The highest and lowest antimicrobial resistance rates were observed against ampicillin (93.8%) and imipenem (21.9%). High prevalence of multi-drug resistance (MDR=96.9%) was substantial. Of the 96 Enterobacter isolates, 35 (36.5%) and 28 (29.2%) were phenotypically ESBL-positive and non-susceptible carbapenem, respectively. Overall, the frequency of evaluated genes was as follows: blaCTX-M =25 (26%), blaTEM =30 (31.3%), blaSHV =12 (12.5%), blaIMP =3 (3.1%), blaVIM =0 (0%), blaNDM =8 (8.3%), and blaKPC =0 (0%).
Conclusion: In this study, we report for the first time the presence of E. gergoviae harboring blaNDM from an Iranian population. Regarding the increase of MDR Enterobacter spp. in our region, strict hygiene rules will be needed to control the quick spread of ESBL and carbapenemase-producing Enterobacter isolates in healthcare facilities of developing countries.


1. Perez A, Poza M, Fernández A, Fernández Mdel C, Mallo S, Merino M, et al. Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother 2012;56:2084-2090.
2. Anago E, Ayi-Fanou L, Akpovi CD, Hounkpe WB, Agassounon-Djikpo Tchibozo M, Bankole HS, et al. Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. Ann Clin Microbiol Antimicrob 2015;14:5.
3. Khanfar HS, Bindayna KM, Senok AC, Botta GA. Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. J Infect Dev Ctries 2009;3:295-299.
4. Kohlenberg A, Schwab F, Rüden H. Wide dissemination of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp. in acute care and rehabilitation hospitals. Epidemiol Infect 2012;140:528-534.
5. Haghighatpanah M, Mozaffari Nejad AS, Mojtahedi A, Amirmozafari N, Zeighami H. Detection of extended-spectrum beta-lactamase (ESBL) and plasmid-borne blaCTX-M and blaTEM genes among clinical strains of Escherichia coli isolated from patients in the north of Iran. J Glob Antimicrob Resist 2016;7:110-113.
6. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. High prevalence of extended-spectrum beta-lactamases and plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn Microbiol Infect Dis 2010;67:261-265.
7. Rosa JF, Rizek C, Marchi AP, Guimaraes T, Miranda L, Carrilho C, et al. Clonality, outer-membrane proteins profile and efflux pump in KPC- producing Enterobacter sp. in Brazil. BMC Microbiol 2017;17:69.
8. Lee JY, Hong YK, Lee H, Ko KS. High prevalence of non-clonal imipenem-nonsusceptible Enterobacter spp. isolates in Korea and their association with porin down-regulation. Diagn Microbiol Infect Dis 2017;87:53-59.
9. Bocanegra-Ibarias P, Garza-González E, Morfín-Otero R, Barrios H, Villarreal-Treviño L, Rodríguez-Noriega E, et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One 2017;12:e0179651.
10. Tacao M, Correia A, Henriques IS. Low Prevalence of carbapenem-resistant bacteria in river water: resistance is mostly related to intrinsic mechanisms. Microb Drug Resist 2015;21:497-506.
11. Qin X, Yang Y, Hu F, Zhu D. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital. J Med Microbiol 2014;63:222-228.
12. Nedjai S, Barguigua A, Djahmi N, Jamali L, Zerouali K, Dekhil M, et al. Prevalence and characterization of extended spectrum beta-lactamase-producing Enterobacter cloacae strains in Algeria. J Infect Dev Ctries 2013;7:804-811.
13. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 26th Informational Supplement. CLSI document M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2016. 2016.
14. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-281.
15. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010;65:490-495.
16. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011;70:119-123.
17. Hoffmann H, Stürenburg E, Heesemann J, Roggenkamp A. Prevalence of extended-spectrum beta-lactamases in isolates of the Enterobacter cloacae complex from German hospitals. Clin Microbiol Infect 2006;12:322-330.
18. Shahid M, Malik A, Akram M, Agrawal LM, Khan AU, Agrawal M. Prevalent phenotypes and antibiotic resistance in Escherichia coli and Klebsiella pneumoniae at an Indian tertiary care hospital: plasmid-mediated cefoxitin resistance. Int J Infect Dis 2008;12:256-264.
19. Stock I, Wiedemann B. Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin Microbiol Infect 2002;8:564-578.
20. Cantón R, Oliver A, Coque TM, Varela Mdel C, Pérez-Díaz JC, Baquero F. Epidemiology of extended-spectrum beta-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12-year period. J Clin Microbiol 2002 ;40:1237-1243.
21. Ho PL, Shek RH, Chow KH, Duan RS, Mak GC, Lai EL, et al. Detection and characterization of extended-spectrum beta-lactamases among bloodstream isolates of Enterobacter spp. in Hong Kong, 2000-2002. J Antimicrob Chemother  2005;55:326-332.
22. Ganeswire R, Thong KL, Puthucheary SD.  Nosocomial outbreak of Enterobacter gergoviae  bacteraemia in a neonatal intensive care unit. J Hosp Infect 2003;53:292-296.
23. Dai W, Sun S, Yang P, Huang S, Zhang X, Zhang L. Characterization of carbapenemases, extended spectrum beta-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infect Genet Evol 2013;14:1-7.
24. Wang S, Xiao SZ, Gu FF, Tang J, Guo XK, Ni YX, et al. Antimicrobial susceptibility and molecular epidemiology of clinical Enterobacter cloacae bloodstream isolates in Shanghai, China. PLoS One 2017;12:e0189713.
25. Peirano G, Matsumura Y, Adams MD, Bradford P, Motyl M, Chen L, et al. Genomic epidemiology of global carbapenemase-producing Enterobacter spp., 2008-2014. Emerg Infect Dis 2018;24:1010-1019.
26. Fernandez J, Montero I, Martínez Ó, Fleites A, Poirel L, Nordmann P, et al. Dissemination of multiresistant Enterobacter cloacae isolates producing OXA-48 and CTX-M-15 in a Spanish hospital. Int J Antimicrob Agents 2015;46:469-474.
27. Asgharzadeh Kangachar S, Mojtahedi A. The presence of extended-spectrum β-lactamase as a risk factor for MDR in clinical isolation of Escherichia coli. Trop Biomed 2017;34:98-109.
28. Ghanavati R, Emaneini M, Kalantar-Neyestanaki D, Maraji AS, Dalvand M, Beigverdi R, et al. Clonal relation and antimicrobial resistance pattern of extended-spectrum beta-lactamase- and AmpC beta-lactamase-producing Enterobacter spp. isolated from different clinical samples in Tehran, Iran. Rev Soc Bras Med Trop 2018;51:88-93.
29. Peymani A, Farivar TN, Sanikhani R, Javadi A, Najafipour R. Emergence of TEM, SHV, and CTX-M-extended spectrum beta-lactamases and class 1 integron among Enterobacter cloacae isolates collected from hospitals of Tehran and Qazvin, Iran. Microb Drug Resist 2014;20:424-430.
30. Armin S, Fallah F, Azimi L, Samadi Kafil H, Ghazvini K, Hasanzadeh S, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol (Noisy-le-grand) 2018;64:125-129.
31. Villa J, Viedma E, Brañas P, Orellana MA, Otero JR, Chaves F. Multiclonal spread of VIM-1-producing Enterobacter cloacae isolates associated with In624 and In488 integrons located in an IncHI2 plasmid. Int J Antimicrob Agents 2014;43:451-455.
32. Hu F, Chen S, Xu X, Guo Y, Liu Y, Zhu D, et al. Emergence of carbapenem-resistant clinical Enterobacteriaceae isolates from a teaching hospital in Shanghai, China. J Med Microbiol 2012;61:132-136.
33. Park YJ, Park SY, Oh EJ, Park JJ, Lee KY, Woo GJ, et al. Occurrence of extended-spectrum beta-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn Microbiol Infect Dis 2005;51:265-269.
34. Yu WL, Cheng KC, Chi CJ, Chen HE, Chuang YC, Wu LT. Characterisation and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacter cloacae isolated from a district teaching hospital in Taiwan. Clin Microbiol Infect 2006;12:579-582.
35. Nilsen E, Haldorsen BC, Sundsfjord A, Simonsen GS, Ingebretsen A, Naseer U, et al. Large IncHI2-plasmids encode extended-spectrum beta-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clin Microbiol Infect 2013;19:E516-518.
36. Park YJ, Yu JK, Lee S, Park JJ, Oh EJ. Evaluation of phoenix automated microbiology system for detecting extended-spectrum beta-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, and Serratia marcescens. Ann Clin Lab Sci 2007;37:75-78.
37. Swayne R, Ellington MJ, Curran MD, Woodford N, Aliyu SH. Utility of a novel multiplex TaqMan PCR assay for metallo-beta-lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum beta-lactamases. Int J Antimicrob Agents 2013;42:352-356.
38. Coelho A, Piedra-Carrasco N, Bartolomé R, Quintero-Zarate JN, Larrosa N, Cornejo-Sánchez T. Role of IncHI2 plasmids harbouring blaVIM-1, blaCTX-M-9, aac(6’)-Ib and qnrA genes in the spread of multiresistant Enterobacter cloacae and Klebsiella pneumoniae strains in different units at Hospital Vall d’Hebron, Barcelona, Spain. Int J Antimicrob Agents 2012;39:514-517.
39. Tuon FF, Scharf C, Rocha JL, Cieslinsk J, Becker GN, Arend LN. KPC-producing Enterobacter aerogenes infection. Braz J Infect Dis 2015;19:324-327.
40. Ahn C, Syed A, Hu F, O’Hara JA, Rivera JI, Doi Y. Microbiological features of KPC-producing Enterobacter isolates identified in a U.S. hospital system. Diagn Microbiol Infect Dis 2014;80:154-158.