1. Chinigo GM, Paige M, Grindrod S, Hamel E, Dakshanamurthy S, Chruszcz M, et al. Asymmetric synthesis of 2, 3-dihydro-2-arylquinazolin-4-ones: methodology and application to a potent fluorescent tubulin inhibitor with anticancer activity. J Med Chem 2008; 51:4620-4631.
2. Hamel E. Antimitotic natural products and their interactions with tubulin. Med Res Rev 1996; 16:207-231.
3. Honore S, Pasquier E, Braguer D. Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 2005; 62:3039-3056.
4. Mirzaei S, Hadizadeh F, Eisvand F, Mosaffa F, Ghasemi A, Ghodsi R. Design, synthesis and biological evaluation of novel 5, 6, 7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2020; 98, 103711-103727.
5. Behbahani FS, Tabeshpour J, Mirzaei S, Golmakaniyoon S, Tayarani-Najaran Z, Ghasemi A, et al. Synthesis and biological evaluation of novel benzo[c]acridine-diones as potential anticancer agents and tubulin polymerization inhibitors. Arch Pharm 2019; 352: 1800307-1800318.
6. Mirzaei S, Hadizadeh F, Eisvand F, Mosaffa F, Ghodsi R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J Mol Struct 2020; 1202, 127310-127322.
7. Karimikia E, Behravan J, Zarghi A, Ghandadi M, Omid Malayeri S, Ghodsi R: Colchicine-like β-acetamidoketones as inhibitors of microtubule polymerization: Design, synthesis and biological evaluation of in vitro anticancer activity. Iran J Basic Med Sci 2019, 22:1138-1146.
8.Romagnoli R, Baraldi PG, Carrion MD, Cruz-Lopez O, Cara CL, Basso G, et al. 2-Arylamino-4-amino-5-aroylthiazoles. “One-pot” synthesis and biological evaluation of a new class of inhibitors of tubulin polymerization. J Med Chem 2009; 52:5551-5555.
9.Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J Med Chem 1991; 34:2579-2588.
10. Ohsumi K, Hatanaka T, Fujita K, Nakagawa R, Fukuda Y, Nihei Y, et al. Syntheses and antitumor activity of cis-restricted combretastatins: 5-membered heterocyclic analogues. Bioorg Med Chem Lett 1998; 8:3153-3158.
11. Pettit GR, Rhodes MR, Herald DL, Hamel E, Schmidt JM, Pettit RK. Antineoplastic agents. 445. Synthesis and evaluation of structural modifications of (Z)- and (E)-combretastatin A-41. J Med Chem 2005; 48:4087-4099.
12. Hsieh HP, Liou JP, Mahindroo N. Pharmaceutical design of antimitotic agents based on combretastatins. Curr Pharm Des 2005; 11:1655-1677.
13. Nam NH. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Med Chem 2003; 10:1697-1722.
14. Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem 2006; 49:3033-3044.
15. Pinney KG, Jelinek C, Edvardsen K, Chaplin DJ, Pettit GR. The discovery and development of combretastatins in anticancer agents from natural products; Gordon M. Cragg, David G. I. Kingston, David J. Newman (Eds). Taylor & francis group boca raton florida 2005:23-46.
16. Lopus M, Oroudjev E, Wilson L, Wilhelm S, Widdison W, Chari R, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther 2010; 9:2689-2699.
17. Ghodsi R, Azizi E, Grazia Ferlin M, Pezzi V, Zarghi A. Design, synthesis and biological evaluation of 4-(imidazolylmethyl)-2-aryl-quinoline derivatives as aromatase inhibitors and anti-breast cancer agents. Lett Drug Des Discov 2016; 13:89-97.
18. Jafari F, Baghayi H, Lavaee P, Hadizadeh F, Soltani F, Moallemzadeh H, et al. Design, synthesis and biological evaluation of novel benzo-and tetrahydrobenzo-[h] quinoline derivatives as potential DNA-intercalating antitumor agents. Eur J Med Chem 2019; 164:292-303.
19. Malayeri SO, Abnous K, Arab A, Akaberi M, Mehri S, Zarghi A, et al. Design, synthesis and biological evaluation of 7-(aryl)-2, 3-dihydro-[1, 4] dioxino [2, 3-g] quinoline derivatives as potential Hsp90 inhibitors and anticancer agents. Bioorg Med Chem 2017; 25:1294-1302.
20.Nakagawa-Goto K, Taniguchi Y, Watanabe Y, Oda A, Ohkoshi E, Hamel E, et al. Triethylated chromones with substituted naphthalenes as tubulin inhibitors. Bioorg Med Chem 2016; 24:6048-6057.
21. Pang Y, Yan J, An B, Huang L, Li X. The synthesis and evaluation of new butadiene derivatives as tubulin polymerization inhibitors. Bioorg Med Chem 2017; 25:3059-3067.
22. Xu S, An B, Li Y, Luo X, Li X, Jia X. Synthesis and evaluation of new 2-chloro-4-aminopyrimidine and 2, 6-dimethyl-4-aminopyrimidine derivatives as tubulin polymerization inhibitors. Bioorg Med Chem Lett 2018; 28:1769-1775.
23. Guggilapu SD, Guntuku L, Reddy TS, Nagarsenkar A, Sigalapalli DK, Naidu V, et al. Synthesis of thiazole linked indolyl-3-glyoxylamide derivatives as tubulin polymerization inhibitors. Eur J Med Chem 2017; 138:83-95.
24. Swami R, Singh I, Jeengar MK, Naidu V, Khan W, Sistla R. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int J Pharm 2015; 486:287-296.
25. Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428:198-202.