Dissemination of different sequence types lineages harboring blaCTX-M-15 among uropathogenic Escherichia coli in Kerman, Iran

Document Type : Original Article

Authors

1 Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran

2 Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

3 Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran

4 Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico

5 Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico

6 Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran

Abstract

Objective(s): Escherichia coli is one of the most important causes of urinary tract infections (UTIs). The aim of this study was to determine antimicrobial resistance, resistance and virulence genes; phylogenetic groups and identify the epidemiologic features of uropathogenic E. coli (UPEC) isolates by multilocus sequence typing (MLST).
Materials and Methods: One hundred isolates of E. coli from inpatients with UTIs were collected in Kerman, Iran. Antimicrobial susceptibility testing, ESBLs, AmpC production and biofilm formation were performed by phenotypic methods. Phylogenetic groups, resistance and virulence genes were detected. Molecular typing of isolates was performed by MLST.
Results: In this study, 76% of isolates were multidrug-resistant. The blaCTX-M-15 and blaTEM were the dominant ESBL-encoding gene. Among 63 ciprofloxacin-resistant isolates, the frequency of qnrS (15.8%), qnrB (9.5%), and aac (6’)-Ib (25% ) genes was shown. Fifty-five present of isolates were classified as week biofilm, (14%) moderate biofilm, and (5%) strong. The predominant phylogenetic group was B2 (3) .  The prevalence of virulence genes ranged fimH (93%), iutA (66%), KpsmtII (59%), sat (39%), cnf (28%) and hlyA (27%). According to MLST results, 14 sequence types (ST) including ST-693, ST-90, ST-101, ST-1664, ST-2083, ST-131, ST-4443, ST-744, ST-361, ST-405, ST-922, ST-648, ST-5717and ST-410 were detected, indicating a high degree of genotypic diversity.
Conclusion: We identified a high frequency of the ST131 clonal group among UTIs. These data show an important public health threat, and so further studies to control the dissemination and risk factors for acquisition of the ST131 clonal group and other STs are needed to make effective control.

Keywords


1. Pitout J. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 2012;3:9:1-6.
2. Stürenburg E, Mack D. Extended-spectrum β-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J Infect 2003;47:273-295.
3. Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Association between virulence profile, biofilm formation and phylogenetic groups of Escherichia coli causing urinary tract infection and the commensal gut microbiota: a comparative analysis. Microb Pathog 2017;110:540-545.
4. Yu F-y, Yao D, Pan J-y, Chen C, Qin Z-q, Parsons C, et al. High prevalence of plasmid-mediated 16S rRNA methylase gene rmtB among Escherichia coli clinical isolates from a chinese teaching hospital. BMC Infect Dis 2010;10:184-190.
5. Wu Q, Zhang Y, Han L, Sun J, Ni Y. Plasmid-mediated 16S rRNA methylases in aminoglycoside-resistant Enterobacteriaceae isolates in shanghai, China. Antimicrob Agents Chemother 2009;53:271-272.
6. Van der Bij AK, Peirano G, Pitondo-Silva A, Pitout JD. The presence of genes encoding for different virulence factors in clonally related Escherichia coli that produce CTX-Ms. Diagn Microbiol Infect Dis 2012;72:297-302.
7. Dobrindt U. (Patho-) genomics of Escherichia coli. Int J Med Microbiol 2005;295:357-371.
8. Slavchev G, Pisareva E, Markova N. Virulence of uropathogenic Escherichia coli. J culture collections 2009;6:3-9.
9. Van Den Bosch JF, Verboom-Sohmer U, Postma P, De Graaff J, MacLaren DM. Mannose-sensitive and mannose-resistant adherence to human uroepithelial cells and urinary virulence of Escherichia coli. Infect Immun 1980;29:226-233.
10. Marrs CF, Zhang L, Foxman B. Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol Lett 2005;252:183-190.
11. Tajbakhsh E, Ahmadi P, Abedpour-Dehkordi E, Arbab-Soleimani N, Khamesipour F. Biofilm formation, antimicrobial susceptibility, serogroups and virulence genes of uropathogenic Escherichia coli isolated from clinical samples in Iran. Antimicrob Resist Infect Control 2016;5:1-8.
12. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of theEscherichia coli phylogenetic group. Appl Environ Microbiol 2000;66:4555-4558.
13. Gordon DM, Clermont O, Tolley H, Denamur E. Assigning Escherichia coli strains to phylogenetic groups: multi‐locus sequence typing versus the PCR triplex method. Environ Microbiol 2008;10:2484-2496.
14. Sabaté M, Moreno E, Pérez T, Andreu A, Prats G. Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin Microbiol Infect 2006;12:880-886.
15. Lau SH, Reddy S, Cheesbrough J, Bolton FJ, Willshaw G, Cheasty T, et al. Major uropathogenic Escherichia coli strain isolated in the northwest of england identified by multilocus sequence typing. J Clin Microbiol. 2008;46:1076-1080.
16. Raeispour M, Ranjbar R. Antibiotic resistance, virulence factors and genotyping of uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control 2018;7:118:1-9.
17. Adiri RS, Gophna U, Ron EZ. Multilocus sequence typing (MLST) of Escherichia coli O78 strains. FEMS Microbiol Lett 2003;222:199-203.
18. Yun KW, Do Soo Kim WK, Lim IS. Molecular typing of uropathogenic Escherichia coli isolated from Korean children with urinary tract infection. Korean J Pediatr 2015;58:20-27.
19. Trepeta RW, Edberg SC. Methylumbelliferyl-beta-D-glucuronide-based medium for rapid isolation and identification of Escherichia coli. J Clin Microbiol 1984;19:172-174.
20. Clinical  and  Laboratory  Standards  Institute.  Performance  Standards    for    Antimicrobial    Susceptibility    Testing, 27th Edition (M100). Wayne Pa: Clinical and Laboratory Standards Institute; 2017.
21. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268-281.
22. Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol 2005;43:3110-3113.
23. Qi C, Pilla V, Jessica HY, Reed K. Changing prevalence of Escherichia coli with CTX-M–type extended-spectrum β-lactamases in outpatient urinary Escherichia coli between 2003 and 2008. Diagn Microbiol Infect Dis 2010;67:87-91.
24. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at labbafinejad hospital, Tehran, Iran. Microb Drug Resist 2010;16:49-53.
25. Kiaei S, Moradi M, Hosseini-Nave H, Ziasistani M, Kalantar-Neyestanaki D. Endemic dissemination of different sequence types of carbapenem-resistant Klebsiella pneumoniae strains harboring blaNDM and 16S rRNA methylase genes in Kerman hospitals, Iran, from 2015 to 2017. Infect Drug Resist 2019;12:45-54.
26. Robicsek A, Strahilevitz J, Sahm D, Jacoby G, Hooper D. Qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 2006;50:2872-2874.
27. Yun KW, Kim HY, Park HK, Kim W, Lim IS. Virulence factors of uropathogenic Escherichia coli of urinary tract infections and asymptomatic bacteriuria in children. J Microbiol Immunol Infect 2014;47:455-461.
28. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. Apmis 2007;115:891-899.
29. Escobar‐Páramo P, Le Menac’h A, Le Gall T, Amorin C, Gouriou S, Picard B, et al. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol 2006;8:1975-1984.
30. Haghighatpanah M, Mojtahedi A. Characterization of antibiotic resistance and virulence factors of Escherichia coli strains isolated from Iranian inpatients with urinary tract infections. Infect Drug Resist 2019;12:2747-2754.
31. Singh SK, Seema K, Gupta M. Detection of AmpC β-lactamase and adherence factors in uropathogenic Escherichia coli isolated from aged patients. Microb Pathog 2016;100:293-298.
32. Shayan S, Bokaeian M. Detection of ESBL-and AmpC-producing E. coli isolates from urinary tract infections. Adv Biomed Res 2015;4:220:1-6.
33. Lavollay M, Mamlouk K, Frank T, Akpabie A, Burghoffer B, Ben Redjeb S, et al. Clonal dissemination of a CTX-M-15 beta-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob Agents Chemother 2006;50:2433-2438.
34. Seyedjavadi SS, Goudarzi M, Sabzehali F. Relation between blaTEM, blaSHV and blaCTX-M genes and acute urinary tract infections. J Acute Dis 2016;5:71-76.
35. Tiruvury H, Johnson JR, Mariano N, Grenner L, Colon-Urban R, Erritouni M, et al. Identification of CTX-M β-lactamases among Escherichia coli from the community in New York City. Diagn Microbiol Infect Dis 2012;72:248-252.
36. Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance determinant QnrB4 identified in France in an Enterobacter cloacae clinical isolate coexpressing a qnrS1 determinant. Antimicrob Agents Chemother 2007;51:2652-2653.
37. Søraas A, Sundsfjord A, Sandven I, Brunborg C, Jenum PA. Risk factors for community-acquired urinary tract infections caused by ESBL-producing enterobacteriaceae–a case–control study in a low prevalence country. PloS one 2013;8:1-7.
38. Maheswari UB, Palvai S, Anuradha PR, Kammili N. Hemagglutination and biofilm formation as virulence markers of uropathogenic Escherichia coli in acute urinary tract infections and urolithiasis. Indian J Urol 2013;29:277-281.
39. Hagos DG, Mezgebo TA, Berhane S, Medhanyie AA. Biofilm and hemagglutinin formation: a hallmark for drug resistant uropathogenic Escherichia coli. BMC Res Notes 2019;12:358-363.
40. Qiu J, Jiang Z, Ju Z, Zhao X, Yang J, Guo H, et al. Molecular and Phenotypic characteristics of Escherichia coli isolates from Farmedminks in Zhucheng, China. Biomed Res Int 2019; 3917841:1-12.
41. Doumith M, Day M, Ciesielczuk H, Hope R, Underwood A, Reynolds R, et al. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J Clin Microbiol 2015;53:160-166.
42. Sarkar S, Vagenas D, Schembri MA, Totsika M. Biofilm formation by multidrug resistant Escherichia coli ST131 is dependent on type 1 fimbriae and assay conditions. Pathog Dis 2016;74:1-5.
43. Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P, Gilbert GL. Escherichia coli sequence type 131 as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J Clin Microbiol 2013;51:3270-3276.