Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway

Document Type : Original Article

Authors

1 Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

2 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

3 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran

4 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Objective(s): This research was designed to demonstrate the impact of voluntary exercise on sperm parameters including sperm count, morphology, motility, viability, testicular apoptosis, oxidative stress, and the mir-34a/SIRT1/p53 pathway in type 2 diabetic rats.
Materials and Methods: 32 Wistar male rats were separated into four groups: control (C), voluntary exercise (VE), diabetic (D), and diabetic rats that performed voluntary exercise (VED). To induce diabetes, animals were injected with streptozotocin (35 mg/kg) after receiving a high-fat diet. The testicular protein levels of SIRT1 and P53, miR-34a expression, MDA, GPx, SOD, catalase, and sperm parameters were evaluated.
Results: Diabetes caused increased testicular MDA content, miR-34a expression, acetylated p53 protein expression, and the percent of immotile sperm (p Conclusion: It seems that voluntary exercise has significant positive impacts that can be employed to reduce the complications of type 2 diabetes in the testis of male rats.

Keywords


1. Shokri F, Shokoohi M, Niazkar HR, Abadi ARR, Kalarestaghi H, Ahin M. Investigation the spermatogenesis and testis structure in diabetic rats after treatment with Galega officinalis Extract. Crescent J Med Biol Sci 2019; 6:31-36.
2. Bhattacharya SM, Ghosh M, Nandi N. Diabetes mellitus and abnormalities in semen analysis. J Obstet Gynaecol Res 2014; 40:167-171.
3. Jain GC, Jangir RN. Modulation of diabetes-mellitus-induced male reproductive dysfunctions in experimental animal models with medicinal plants. Pharmacogn Rev 2014; 8:113-121.
4. Roessner C, Paasch U, Kratzsch J, Glander H-J, Grunewald S. Sperm apoptosis signalling in diabetic men. Reprod Biomed Online 2012; 25:292-299.
5.de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 2008; 1784:106-115.
6. La Vignera S, Condorelli R, Vicari E, D’agata R, Salemi M, Calogero A. High levels of lipid peroxidation in semen of diabetic patients. Andrologia 2012; 44:565-570.
7. Agbaje I, Rogers D, McVicar C, McClure N, Atkinson A, Mallidis C, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod 2007; 22:1871-1877.
8. Delfino M, Imbrogno N, Elia J, Capogreco F, Mazzilli F. Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urol Nefrol 2007; 59:131-135.
9.Khaneshi F, Nasrolahi O, Azizi S, Nejati V. Sesame effects on testicular damage in streptozotocin-induced diabetes rats. Avicenna J Phytomed 2013; 3:347-355.
10. Zavvari Oskuye Z, Mirzaei Bavil F, Hamidian GR, Mehri K, Qadiri A, Ahmadi M, et al. The effect of troxerutin on male fertility in prepubertal type 1 diabetic male rats. Iran J Basic Med Sci 2019; 22:197-205.
11. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 2011; 50:567-575.
12. Heydari H, Ghiasi R, Ghaderpour S, Keyhanmanesh R. The mechanisms involved in obesity-induced male infertility. Curr Diabetes Rev 2020; Online ahead of print.
13. Maritim A, Sanders a, Watkins Iii J. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17:24-38.
14. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008; 105:13421-13426.
15. Zhang F, Cui J, Liu X, Lv B, Liu X, Xie Z, et al. Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Res Ther 2015; 6:195-207.
16. Ghazipour AM, Shirpoor A, Ghiasi R, Pourheydar B, Khalaji N, Naderi R. Cyclosporine A induces testicular injury via mitochondrial apoptotic pathway by regulation of mir-34a and sirt-1 in male rats: The rescue effect of curcumin. Chem Biol Interact 2020; 327:109180.
17. Fatemi N, Sanati MH, Shamsara M, Moayer F, Zavarehei MJ, Pouya A, et al. TBHP-induced oxidative stress alters microRNAs expression in mouse testis. J Assist Reprod Genet 2014; 31:1287-1293.
18. Türk G, Sönmez M, Çeribaşı AO, Yüce A, Ateşşahin A. Attenuation of cyclosporine A-induced testicular and spermatozoal damages associated with oxidative stress by ellagic acid. Int Immunopharmacol 2010; 10:177-182.
19. Tabuchi T, Satoh M, Itoh T, Nakamura M. MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression. Clin Sci 2012; 123:161-171.
20. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26:745-752.
21. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 2010; 398:735-740.
22. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 2010; 299:E110-E116.
23. Lee J, Padhye A, Sharma A, Song G, Miao J, Mo Y-Y, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 2010; 285:12604-12611.
24. Jiao D, Zhang H, Jiang Z, Huang W, Liu Z, Wang Z, et al. MicroRNA-34a targets sirtuin 1 and leads to diabetes-induced testicular apoptotic cell death. J Mol Med 2018; 96:939-949.
25. Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets 2014; 6:e27754-8.
26. Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced β-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005; 90:501-506.
27. Adaramoye O, Akanni O, Adesanoye O, Labo-Popoola O, Olaremi O. Evaluation of toxic effects of metformin hydrochloride and glibenclamide on some organs of male rats. Niger J Physiol Sci 2012; 27:137-144.
28. Ghorbanzadeh V, Mohammadi M, Mohaddes G, Darishnejad H, Chodari L. Effect of crocin and voluntary exercise on P53 protein in pancreas of type2 diabetic rats. Pharm Sci 2017; 23:182-188.
29. Duclos M, Corcuff J, Pehourcq F, Tabarin A. Decreased pituitary sensitivity to glucocorticoids in endurance-trained men. Eur J Endocrinol 2001; 144:363-368.
30. Campbell JE, Király MA, Atkinson DJ, D’souza AM, Vranic M, Riddell MC. Regular exercise prevents the development of hyperglucocorticoidemia via adaptations in the brain and adrenal glands in male Zucker diabetic fatty rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R168-R176.
31. Bradley RL, Jeon JY, Liu F-F, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 2008; 295:E586-E594.
32. Ghiasi R, Naderi R, Mozaffar A, Alihemmati A. The effect of swimming training on oxidative stress, SIRT1 gene expression, and histopathology of hepatic tissue in type 2 diabetic rats. Biologia Futura 2019; 70:167-174.
33. Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Chodari L, Mohaddes G. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats. J Endocrinol Invest 2016; 39:1179-1186.
34. Chodari L, Mohammadi M, Ghorbanzadeh V, Dariushnejad H, Mohaddes G. Testosterone and voluntary exercise promote angiogenesis in hearts of rats with diabetes by enhancing expression of VEGF-A and SDF-1a. Can J Diabetes 2016; 40:436-441.
35. Ren Y, Du C, Shi Y, Wei J, Wu H, Cui H. The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress. Int J Mol Med 2017; 39:1317-1324.
36. Shokoohi M, Shoorei H, Khaki A, Khaki A, Moghimian M, Abtahi‐Eivary SH. Hesperidin attenuated apoptotic‐related genes in testicle of a male rat model of varicocoele. Andrology 2019; 8: 249-258.
37. Qadiri A, Bavil FM, Hamidian G, Oskuye ZZ, Ahmadi M, Oghbaei H, et al. Administration of troxerutin improves testicular function and structure in type-1 diabetic adult rats by reduction of apoptosis. Avicenna J Phytomed 2019; 9:374-385.
38. Keyhanmanesh R, Hamidian G, Alipour MR, Oghbaei H. Beneficial treatment effects of dietary nitrate supplementation on testicular injury in streptozotocin-induced diabetic male rats. Reprod Biomed Online 2019; 39:357-371.
39. Oghbaei H, Alipour MR, Hamidian G, Ahmadi M, Ghorbanzadeh V, Keyhanmanesh R. Two months sodium nitrate supplementation alleviates testicular injury in streptozotocin‐induced diabetic male rats. Exp Physiol 2018; 103:1603-1617.
40. Keyhanmanesh R, Hamidian G, Alipour MR, Ranjbar M, Oghbaei H. Protective effects of sodium nitrate against testicular apoptosis and spermatogenesis impairments in streptozotocin-induced diabetic male rats. Life Sci 2018; 211:63-73.
41. Shi G-J, Zheng J, Wu J, Qiao H-Q, Chang Q, Niu Y, et al. Protective effects of Lycium barbarum polysaccharide on male sexual dysfunction and fertility impairments by activating hypothalamic pituitary gonadal axis in streptozotocin-induced type-1 diabetic male mice. Endocr J 2017:EJ16-0430.
42. Oridupa OA, Folasire OF, Owolabi AJ, Aina O. Effect of traditional treatment of diabetes mellitus with Xanthosoma sagittifolium on the male reproductive system of Alloxan-induced diabetic Wistar rats. Drug Res 2017; 67:337-342.
43. Vaamonde D, Da Silva-Grigoletto ME, García-Manso JM, Barrera N, Vaamonde-Lemos R. Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Physiol 2012; 112:3267-3273.
44. Mangoli E, Talebi AR, Anvari M, Pourentezari M. Effects of experimentally-induced diabetes on sperm parameters and chromatin quality in mice. Iran J Reprod Med 2013; 11:53-60.
45. Samadian Z, Tofighi A, Razi M, Tolouei Azar J, Ghaderi Pakdel F. Moderate‐intensity exercise training ameliorates the diabetes‐suppressed spermatogenesis and improves sperm parameters: Insole and simultaneous with insulin. Andrologia 2019; 51:e13457.
46. Maiti R, Karak P, Misra DS, Ghosh D. Diabetes-induced testicular dysfunction correction by hydromethanolic extract of Tamarindus indica Linn. seed in male albino rat. Int J Green Pharm 2018; 11: S789-S796.
47.Vaamonde D, Da Silva M, Poblador M, Lancho J. Reproductive profile of physically active men after exhaustive endurance exercise. Int J Sports Med 2006; 27:680-689.
48. Ghorbanzadeh V, Mohammadi M, Mohaddes G, Dariushnejad H, Chodari L, Mohammadi S. Protective effect of crocin and voluntary exercise against oxidative stress in the heart of high-fat diet-induced type 2 diabetic rats. Physiol Int 2016; 103:459-468.
49. Erukainure OL, Reddy R, Islam MS. Raffia palm (Raphia hookeri) wine extenuates redox imbalance and modulates activities of glycolytic and cholinergic enzymes in hyperglycemia‐induced testicular injury in type 2 diabetic rats. J Food Biochem 2019; 43:e12764.
50. Kanter M, Aktas C, Erboga M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food Chem Toxicol 2012; 50:719-725.
51. Naderi R, Mohaddes G, Mohammadi M, Ghaznavi R, Ghyasi R, Vatankhah AM. Voluntary exercise protects heart from oxidative stress in diabetic rats. Adv Pharm Bull 2015; 5: 231–236.
52. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxid Med Cell Longev 2008; 1:15-24.
53. Mruk DD, Silvestrini B, Mo MY, Cheng CY. Antioxidant superoxide dismutase - a review: its function, regulation in the testis, and role in male fertility. Contraception 2002; 65:305-311.
54. Abreu IA, Cabelli DE. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim Biophys Acta 2010; 1804:263-274.
55. Hsieh YY, Sun YL, Chang CC, Lee YS, Tsai HD, Lin CS. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J Clin Lab Anal 2002; 16:127-131.
56. Agarwal A, Prabakaran SA. Oxidative stress and antioxidants in male infertility: a difficult balance. Int J Reprod Med 2005; 3:1-8.
57. Teixeira de Lemos E, Oliveira J, Páscoa Pinheiro J, Reis F. Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxid Med Cell Longev 2012; 2012:1-15.
58. Cooper C, Vollaard NB, Choueiri T, Wilson M. Exercise, free radicals and oxidative stress. Biochem Soc Trans 2002; 30:280–285.
59. Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003; 189:41-54.
60. Roberts CK, Won D, Pruthi S, Barnard RJ. Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men. Diabetes Res Clin Pract 2006; 73:249-259.
61. Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction 2007; 134:73-79.
62. Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol 2014; 6:214-230.
63. Lize M, Pilarski S, Dobbelstein M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. CDD 2010; 17:452-458.
64. Welch C, Chen Y, Stallings R. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26:5017-5022.
65. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol cell 2007; 26:731-743.
66. Cao W, Fan R, Wang L, Cheng S, Li H, Jiang J, et al. Expression and regulatory function of miRNA-34a in targeting survivin in gastric cancer cells. Tumour Biol 2013; 34:963-971.
67. Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, et al. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett 2011; 200:100-106.
68. Al-Bader M, Kilarkaje N. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis. Toxicol Appl Pharmacol 2016; 311:61-73.
69. Cai L, Chen S, Evans T, Deng DX, Mukherjee K, Chakrabarti S. Apoptotic germ-cell death and testicular damage in experimental diabetes: prevention by endothelin antagonism. Urol Res 2000; 28:342-347.