Brucella abortus RB51 lipopolysaccharide influence as an adjuvant on the therapeutic efficacy of HPV16 L1 and HPV16 E7 DNA vaccines

Document Type : Original Article

Authors

1 Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran

3 Immunology Lab, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

Abstract

Objective(s): Human papillomavirus (HPV) is a primary contributing agent of cervical cancer. Eradication of HPV-related infections requires therapeutic strategies. We used Brucella abortus RB51 rough lipopolysaccharide (R-LPS) as an adjuvant along with two HPV16 therapeutic DNA vaccines, pcDNA3-E7 and pcDNA3-L1, for improving DNA vaccine efficacy.
Materials and Methods: For evaluation of the B. abortus LPS adjuvant efficacy in combination with DNA vaccines to induce cellular immune responses, C57BL/6 mice were immunized with the DNA vaccines, with or without R-LPS adjuvant. IFN-γ and IL-4 cytokines assay was carried out for assessment of cellular and humoral immune responses.  
Results: Findings indicated that vaccination with pcDNA3-E7 or pcDNA3-L1 alone could induce strong cellular immune responses, but stronger antigen-specific T-cell immune responses were shown by co-administration of HPV16 E7 and HPV16 L1 DNA vaccines along with R-LPS adjuvant.
Conclusion: Overall, B. abortus R-LPS through enhancement of T-cell immune responses can be considered an efficient vaccine adjuvant in future studies and trials.

Keywords


1. Lee H-J, Yoon JK, Heo Y, Cho H, Cho Y, Gwon Y, et al. Therapeutic potential of an AcHERV-HPV L1 DNA vaccine. J Microbiol 2015; 53:415-420.
2. Zarchi MK, Heydari E, Tabatabaie A, Moghimi M, Kooti W. Diagnostic value of the care™ HPV test in screening for cervical intraepithelial neoplasia grade 2 or worse. Asian Pac J cancer Prev: APJCP 2017; 18:687-693.
3. Organization WH. Human papillomavirus vaccines: WHO position paper. Wkly Epidemiol Rec= Relevé épidémiologique hebdomadaire 2009; 84:118-131.
4. Shafabakhsh R, Reiter RJ, Mirzaei H, Teymoordash SN, Asemi Z. Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol 2019; 234:21670-21682.
5. Bissett SL, Godi A, Beddows S. The DE and FG loops of the HPV major capsid protein contribute to the epitopes of vaccine-induced cross-neutralising antibodies. Sci Rep 2016; 6:1-11.
6. Graham SV. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci 2017; 131:2201-2221.
7. Senger T, Schädlich L, Gissmann L, Müller M. Enhanced papillomavirus-like particle production in insect cells. Virology 2009; 388:344-353.
8. De Bruijn ML, Greenstone HL, Vermeulen H, Melief CJ, Lowy DR, Schiller JT, et al. L1-specific protection from tumor challenge elicited by HPV16 virus-like particles. Virology 1998; 250:371-376.
9. Sample KM. DNA repair gene expression is associated with differential prognosis between HPV16 and HPV18 positive cervical cancer patients following radiation therapy. Sci Rep 2020; 10:1-9.
10. Zhang T, Xu Y, Qiao L, Wang Y, Wu X, Fan D, et al. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types. Vaccine 2010; 28:3479-3487.
11. Palmer KE, Jenson AB, Kouokam JC, Lasnik AB, Ghim S-j. Recombinant vaccines for the prevention of human papillomavirus infection and cervical cancer. Exp Mol Pathol 2009; 86:224-233.
12. Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013; 12:129-141.
13. Harper DM, DeMars LR. HPV vaccines–a review of the first decade. Gynecol Oncol 2017; 146:196-204.
14. Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, et al. Comparison of the immunogenicity and safety of Cervarix™ and Gardasil® human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin 2009; 5:705-719.
15. Kianmehr Z, Soleimanjahi H, Ardestani SK, Fotouhi F, Abdoli A. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice. Med Microbiol Immunol 2015; 204:205-213.
16. Liu DW, Chang JL, Tsao YP, Huang CW, Kuo SW, Chen SL. Co‐vaccination with adeno‐associated virus vectors encoding human papillomavirus 16 L1 proteins and adenovirus encoding murine GM‐CSF can elicit strong and prolonged neutralizing antibody. Int J Cancer 2005; 113:93-100.
17. Yang B, Yang A, Peng S, Pang X, Roden RB, Wu TC, et al. Co-administration with DNA encoding papillomavirus capsid proteins enhances the antitumor effects generated by therapeutic HPV DNA vaccination. Cell Biosci 2015; 5:1-10.
18. Kim TJ, Jin H-T, Hur S-Y, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 2014; 5:1-14.
19. Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov 2014; 9:66-82.
20. Donnelly J, Ulmer J. DNA vaccines for viral diseases. Braz J Med Biol Res 1999; 32: 215-222.
21. Yang B, Jeang J, Yang A, Wu TC, Hung C-F. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 2014; 10:3153-3164.
22. Dupuy C, Buzoni-Gatel D, Touzé A, Bout D, Coursaget P. Nasal immunization of mice with human papillomavirus type 16 (HPV-16) virus-like particles or with the HPV-16 L1 gene elicits specific cytotoxic T lymphocytes in vaginal draining lymph nodes. J Virology 1999; 73:9063-9071.
23. Zong J, Peng Q, Wang Q, Zhang T, Fan D, Xu X. Human HSP70 and modified HPV16 E7 fusion DNA vaccine induces enhanced specific CD8+ T cell responses and anti-tumor effects. Oncol Rep 2009; 22:953-961.
24. Lee SY, Kang TH, Knoff J, Huang Z, Soong R-S, Alvarez RD, et al. Intratumoral injection of therapeutic HPV vaccinia vaccine following cisplatin enhances HPV-specific antitumor effects. Cancer Immunol Immunother 2013; 62:1175-1185.
25. Münger K, Phelps W, Bubb V, Howley P, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virology 1989; 63:4417-4421.
26. Zinckgraf JW, Silbart LK. Modulating gene expression using DNA vaccines with different 3′-UTRs influences antibody titer, seroconversion and cytokine profiles. Vaccine 2003; 21:1640-1649.
27. Bahrami AA, Ghaemi A, Tabarraei A, Sajadian A, Gorji A, Soleimanjahi H. DNA vaccine encoding HPV-16 E7 with mutation in LYCYE pRb-binding motif induces potent anti-tumor responses in mice. J virol methods 2014; 206:12-18.
28. Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PloS one 2013; 8:1-9.
29. Peng S, Song L, Knoff J, Wang JW, Chang Y-N, Hannaman D, et al. Control of HPV-associated tumors by innovative therapeutic HPV DNA vaccine in the absence of CD4+ T cells. Cell Biosci 2014; 4:1-12.
30. Mohan T, Verma P, Rao DN. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.  Indian J Med Res 2013; 138:779-795.
31. Sajadian A, Tabarraei A, Soleimanjahi H, Fotouhi F, Gorji A, Ghaemi A. Comparing the effect of Toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol 2014; 159:1951-1960.
32. Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D’Errico G, et al. Chemistry of lipid A: at the heart of innate immunity. Chem Eur J 2015; 21:500-519.
33. Garcia-Vello P, Speciale I, Chiodo F, Molinaro A, De Castro C. Carbohydrate-based adjuvants.  Drug Discov Today Technol 2020; 9:1-12.
34. Thompson BS, Chilton PM, Ward JR, Evans JT, Mitchell TC. The low‐toxicity versions of LPS, MPL® adjuvant and RC529, are efficient adjuvants for CD4+ T cells. J Leukoc Biol 2005; 78:1273-1280.
35. Freytag L, Clements J. Mucosal adjuvants. Vaccine 2005; 23:1804-1813.
36. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007; 316:1628-1632.
37. Goldstein J, Hoffman T, Frasch C, Lizzio E, Beining P, Hochstein D, et al. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun 1992; 60:1385-1389.
38. Fazeli M, Soleimanjahi H, Dadashzadeh S. Further stimulation of cellular immune responses through association of HPV-16 E6, E7 and L1 genes in order to produce more effective therapeutic DNA vaccines in cervical cancer model. Iran J Cancer Prev 2015; 8:18-23.
39. Moreno E, Pitt M, Jones L, Schurig G, Berman D. Purification and characterization of smooth and rough lipopolysaccharides from Brucella abortus. J Bacteriol 1979; 138:361-369.
40. Moreno E, Jones L, Berman D. Immunochemical characterization of rough Brucella lipopolysaccharides. Infect Immun 1984; 43:779-782.
41. Kianmehr Z, Ardestani SK, Soleimanjahi H, Fotouhi F, Alamian S, Ahmadian S. Comparison of biological and immunological characterization of Lipopolysaccharides from Brucella abortus RB51 and S19. Jundishapur J Microbiol 2015; 8:1-8.
42. Tsai C-M, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119:115-119.
43. Yang A, Farmer E, Wu TC, Hung C-F. Perspectives for therapeutic HPV vaccine development. J Biomed Sci 2016; 23:1-19.
44. Chabeda A, Yanez RJ, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res 2018; 5:46-58.
45. Huang Z, Peng S, Knoff J, Lee SY, Yang B, Wu T-C, et al. Combination of proteasome and HDAC inhibitor enhances HPV16 E7-specific CD8+ T cell immune response and antitumor effects in a preclinical cervical cancer model. J Biomed Sci 2015; 22:1-10.
46. Rollman E, Arnheim L, Collier B, Öberg D, Hall H, Klingström J, et al. HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses. Virology 2004; 322:182-189.
47. Han JE, Wui SR, Kim KS, Cho YJ, Cho WJ, Lee NG. Characterization of the structure and immunostimulatory activity of a vaccine adjuvant, de-O-acylated lipooligosaccharide. PLoS One 2014; 1-13.
48. Reed SG, Hsu F-C, Carter D, Orr MT. The science of vaccine adjuvants: advances in TLR4 ligand adjuvants. Curr Opin Immunol 2016; 41:85-90.
49. Campos JH, Soares RP, Ribeiro K, Cronemberger Andrade A, Batista WL, Torrecilhas AC. Extracellular vesicles: role in inflammatory responses and potential uses in vaccination in cancer and infectious diseases.  J Immunol Res 2015;1-14.
50. Jamalan M, Ardestani SK, Zeinali M, Mosaveri N, Taheri MM. Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD. Biologicals 2011; 39:23-28.