Lettuce-avicularin treatment reverses insulin resistance through stimulation of glycolytic kinases and insulin signaling molecules

Document Type : Original Article

Authors

1 Department of Nutrition and Dietetics, Imo State University Owerri, Imo State, Nigeria

2 Deparment of Biochemistry, Imo State University Owerri, Imo State, Nigeria

3 Department of Biochemistry, University of Port Harcourt, Choba, Rivers State, Nigeria

Abstract

Objective(s): In order to recommend a more effective approach to manage insulin resistance, we monitored the activities of glycolytic kinases, insulin signaling molecules, and incretin hormones and identified the possible targets related to the insulin-sensitizing effects of combined pharmacological and dietary intervention involving avicularin and lettuce.
Materials and Methods: Insulin resistance was induced in rats with a fructose-rich diet and confirmed from baseline analysis of FBS (>250 mg/dl), insulin (>25 µIU/ml), and HOMA-IR (>10). For 12 weeks, the insulin-resistant rats were treated exclusively with 5000 mg/kg b.w avicularin (DAvi) or by dietary placement on lettuce (DLet) or a combination of both and compared with non-insulin resistant rats.
Results: Avicularin reversed alterations in HbA1c and insulin levels. DLet produced no significant effect on the incretins GLP 1 (P=0.909) and GIP (P=0.990), but DAvi slightly stimulated GLP 1 but not GIP. A strong positive correlation was found between improved β-cell responsiveness and the insulin signaling molecules: Akt2 (r=0.7248), IRS 1 (r=0.5173), and PI3K (r=0.7892). Only the combined avicularin and lettuce reversed the Akt2 levels (P=0.728). The lettuce meal slightly stimulated PI3K but normalized IRS 1 while avicularin treatment slightly stimulated IRS 1 but restored the PI3K levels (P=0.815). The positive correlation between β-cell responsiveness and hexokinase (r=0.5959), PFK (r=0.6222), and PK (r=0.6591) activities were statistically significant. Alterations in glycolytic kinases were reversed by DLet and in combination with avicularin.
Conclusion: A combined pharmacological and dietary approach with avicularin and lettuce is required to effectively reverse insulin resistance.

Keywords


1.    Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. General and Comparative Endocrinology 2011; 173:227–247.
2.    Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55:2565–2582.
3.    Peppa M, Koliaki C, Nikolopoulos P, Raptis SA. Skeletal muscle insulin resistance in endocrine disease. J Biomed and Biotechnol 2010;2010:527850.
4.    Kong APS, Xu G, Brown N, So WY, Ma RCW, Chan JCN. Diabetes and its comorbidities-where East meets West. Nat Rev Endocrinol 2013; 9:537–547.
5.    Song C, Liu D, Yang S, Cheng L, Xing E, Chen Z. Sericin enhances the insulin‐PI3K/AKT signalling pathway in the liver of a type 2 diabetes rat model. Exp Ther Med 2018; 16:3345-3352.
6.    Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 2006;55:2392-2397.
7.    Ginsberg H: Insulin resistance and cardiovascular disease. 2000; J Clin Invest 106:453–458.
8.    Guo X, Yoshitomi H, Gao M, Qin L, Duan Y, Sun W, et al. Guava leaf extracts promote glucose metabolism in SHRSP. Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle. BMC Complement Altern Med. 2013; 13:1-8.
9.    Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005;87:99-109.
10.    Karlsson HK, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 2007;48:103–113.
11.    DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009;32(Suppl 2): S157–S163.
12.    Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling, IRS5/ DOK4 and IRS6/DOK5. J Biol Chem 2003;278: 25323–25330.
13.    White MF. Regulating insulin signaling and b-cell function through IRS proteins. Can J Physiol Pharmacol 2006;84: 725–737.
14.    Shaw LM. The insulin receptor substrate (IRS) proteins: At the intersection of metabolism and cancer. Cell Cycle 2011;10: 1750–1756.
15.    Lin X, Taguchi A, Park S, Kushner JA, Li F, et al. White MF. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest. 2004;114:908-916.
16.    Hennige AM, Burks DJ, Ozcan U, Kulkarni RN, Ye J, Park S, et al. Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 2003;112:1521-1532.
17.    Gao Y, Zhang M, Wu T, Xu M, Cai H, Zhang Z. Effects of D-pinitol on insulin resistance through the PI3K/Akt signalling pathway in type 2 diabetes mellitus rats. J Agric Food Chem 2015;63:6019–6026.
18.    Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, et al. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signalling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. Int J Biol Macromol 2015;72:951–959.
19.    Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR. Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 1998; 16:2407–2411.
20.    Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Seki G. Selective Insulin Resistance in the Kidney. Bio Med Res Intern 2016; 1-8.
21.    Kim YB, Peroni OD, Franke TF, Kahn BB. Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats. Diabetes 2000; 49:847–856.
22.    Brozinick JT, Roberts BR, Dohm GL. Defective signaling through Akt-2 and-3 but not Akt-1 in insulinresistant human skeletal muscle—Potential role in insulin resistance. Diabetes 2003; 52:935–941.
23.    Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 2002;13: 444–451.
24.    Yang X, Pratley RE, Tokraks S, Bogardus C, Permana PA. Microarray profiling of skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulin-resistant Pima Indians. Diabetologia 2002;45:1584–1593.
25.    Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003;100:8466–8471.
26.    Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003;34:267–273.
27.    Bouché C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev 2004;25:807‐830.
28.    Wang W, Zheng H, Zheng M, Liu X, Yu J. Protective effect of avicularin on rheumatoid arthritis and its associated mechanisms. Exp Ther Med 2018;16:5343-5349.
29.    Zhu X, Qiu Z, Ouyang W, Miao J, Xiong P, Mao D, Feng K, Li M, Luo M, Xiao H, Cao Y. Hepatic transcriptome and proteome analyses provide new insights into the regulator mechanism of dietary avicularin in diabetic mice. Food Res Int 2019; 125:108570.
30.    Schmidt JS, Lauridsen MB, Dragsted LO, Nielsen J, Staerk D. Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of α-glucosidase inhibitors in apple peel (Malus ×domestica Borkh.). Food Chem 2012;135:1692-1699.
31.    Haselgrübler R, Stadlbauer V, Stübl F, Schwarzinger B, Rudzionyte I, Himmelsbach M, et al. Insulin mimetic properties of extracts prepared from Bellis perennis. Molecules 2018;23:2605.
32.    Barnard ND, Scialli AR, Turner-McGrievy G, Lanou AJ, Glass J. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am J Med 2005;118:991e7.
33.    Adeva-Andany MM, González-Lucán M, Fernández-Fernández C, Carneiro-Freire N, Seco-Filgueira M, Pedre-Piñeiro AM. Effect of diet composition on insulin sensitivity in humans. Clin Nutr ESPEN 2019;33:29‐38.
34.    Kahleova H, Tura A, Hill M, Holubkov R, Barnard ND. A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight Adults: a 16-week randomized clinical trial. Nutrients 2018;10:189.
35.    Kim MJ, Moon Y, Tou JC, Mou BQ, Waterland NL. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J Food Compos Anal 2016;49, 19–34.
36.    Cheng DM, Pogrebnyak N, Kuhn P, Krueger CG, Johnson WD, Raskin I. Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLoS One 2014;9:e91571.
37.    Cheng DM, Pogrebnyak N, Kuhn P, Poulev A, Waterman C, Rojas-Silva P, et al. Polyphenol-rich Rutgers Scarlet Lettuce improves glucose metabolism and liver lipid accumulation in diet-induced obese C57BL/6 mice. Nutrition. 2014;30(7-8 Suppl):S52-58.
38.    Cheng DM, Roopchand DE, Poulev A, Kuhn P, Armas I, Johnson WD, et al. High phenolics Rutgers Scarlet Lettuce improves glucose metabolism in high fat diet-induced obese mice. Mol Nutr Food Res 2016 Nov;60:2367-2378.
39.    Lee JH, Felipe P, Yang Y