Preparation and immunological properties of a nanovaccine against Pseudomonas aeruginosa based on gold nanoparticles and detoxified lipopolysaccharide

Document Type : Original Article


1 Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran

2 Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran

3 Department of Immunology and Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran


Objective(s): Pseudomonas aeruginosa is one of the most important bacterial pathogens in immunocompromised patients, and the lipopolysaccharide (LPS) of this organism is a key factor in virulence and both innate and acquired host responses to infection. In this study, we prepared a nanoconjugate vaccine composed of P. aeruginosa detoxified lipopolysaccharide (D-LPS) and gold nanoparticles (Au NPs) and evaluated its potential as a vaccine candidate against P. aeruginosa infections.
Materials and Methods: LPS from P. aeruginosa strain PAO1 was extracted by the hot phenol method with some modifications and then detoxified. Au NPs were synthesized by the reduction of hydrochloroauric acid trihydrate by sodium borohydride and then coupled to D-LPS via electrostatic interaction. Mice were subcutaneously injected in the tail base with 20 µg of D-LPS, D-LPS-Au NPs, Au NPs, and PBS. IgG titers were evaluated by ELISA and whole-cell ELISA methods. The immunized and control group mice were challenged with a 2×LD50 (7.5×107 CFU) of P. aeruginosa strain PAO1.  
Results: Mice vaccinated with D-LPS and D-LPS-Au NPs elicited a significant amount of IgG antibodies. Nanoconjugated LPS generated a significantly higher antibody titer compared with D-LPS alone. Also, immunization of mice with D-LPS-Au NPs increased survival times against challenge with 7.5×107 CFU (2×LD50) of P. aeruginosa strain PAO1.  
Conclusion: Our results showed that the suggested vaccine composed of P. aeruginosa D-LPS and Au NPs had a significant potential to protect against P. aeruginosa infections.


1. Gupta SK, Masinick SH, Garrett M, Hazlett LD. Pseudomonas aeruginosa lipopolysaccharide binds galectin-3 and other human corneal epithelial proteins. Infect Immun 1997; 65:2747-2753.
2. Cryz SJ, Fürer E, Sadoff JC, Germanier R, Pastan I, Willingham MC, et al. Use of Pseudomonas aeruginosa toxin A in the construction of conjugate vaccines and immunotoxins. Rev Infect Dis 1987; 9:644-649. 3. Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens 2020; 9:1-22.  4. Tanomand A, Najar Peerayeh SH, Farajnia S, Majidi J. Protective properties of nontoxic recombinant exotoxin A (domain I-II) against Pseudomonas aeruginosa infection. Iran J Biotech 2013; 11:193-198.
5. Thomas LD, Cripps AW, Kyd JM. Immune response mechanisms against Pseudomonas aeruginosa associated with mucosal immunization with protein antigens in a rat model of acute lung infection. Vaccine 2009; 27:3324-3330.
6. Ryu JI, Wui SR, Ko A, Do HTT, Lee YJ, Kim HJ, et al.  Increased immunogenicity and protective efficacy of a P. aeruginosa vaccine in mice using an alum and de-O-acylated lipooligosaccharide adjuvant system. J Microbiol Biotechnol 2017; 27:1539-1548.
7. Kintz E, Scarff JM, DiGiandomenico A, Goldberg JB. Lipopolysaccharide O-antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain PA103. J Bacteriol 2008; 190:2709-2716.
8. Cryz SJ, Furer E, Sadoff JC, Germanier R. Pseudomonas aeruginosa Immunotype 5 Polysaccharide-Toxin A Conjugate Vaccine. Infect Immun 1986; 52:161-165.  
9. Safari Zanjani L, Shapoury R, Dezfulian M, Mahdavi M, Shafieeardestani M. Protective potential of conjugated P. aeruginosa LPS –PLGA nanoparticles in mice as a nanovaccine. Iran J Immunol 2020; 17:75-86.
10. Sanchez-Villamil JI, Tapia D, Torres AG. Development of a gold nanoparticle vaccine against enterohemorrhagic Escherichia coli O157:H7. mBio 2019; 10:1-16.
11. Siddique S, Chow JCL. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 2020; 10:3824-3845.
12. Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020; 19:465-477.
13. Sekimukai H, Iwata-Yoshikawa N, Fukushi S, Tani H, Kataoka M, Suzuki T, et al. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol 2020; 64:33-51.
14. Najafzadeh F, Jaberi G, Shapouri R, Rahnema M, Karimi nik A, Kianmehr A. Immunogenicity comparison of conjugate vaccines composed of alginate and lipopolysaccharide of Pseudomonas aeruginosa bound to diphtheria toxoid. Iran J Microbiol 2014; 6:317-323.  
15. Shapouri R, Mohabati Mobarez A, Ahmadi H, Tabaraie B, Hosseini Doust R, Norozian D, et al. Optimization of Brucella abortus fermenter cultural conditions and LPS extraction method for antigen production. Res J Microbiol 2008; 3:1-8.
16. Najafzadeh F, Shapouri R, Rahnema M, Rokhsartalab Azar SH, Kianmehr A. Pseudomonas aeruginosa PAO-1 lipopolysaccharide-diphtheria toxoid conjugate vaccine: preparation, characterization and immunogenicity. Jundishapur J Microbiol 2015; 8:1-6.
17. Li Y, Shi Z, Radauer-Preiml I, Andosch A, Casals E, Luetz-Meindl U, et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology 2017; 11:1157-1175.  
18. Field A, Field J. Melamine and cyanuric acid do not interfere with Bradford and Ninhydrin assays for protein determination. Food Chem 2010; 121:912-917. 19. Olson ND, Morrow JB. DNA extract characterization process for microbial detection methods development and validation. BMC Res Notes 2012; 5:1-14.
20. Rokhsartalab Azar SH, Shapouri R, Rahnema M, Najafzadeh F, Kianmehr A. Synthesis, characterization and immunological properties of Escherichia coli 0157:H7 lipopolysaccharide- diphtheria toxoid conjugate vaccine. Iran J Microbiol 2015; 7:150-155. 21. Jiang G, Wang L, Chen W. Studies on the preparation and characterization of gold nanoparticles protected by dendrons. Mater Lett 2007; 61:278-283.
22. Capek I. Noble Metal Nanoparticles. In: Lockwood DJ, editor. Noble metal nanoparticles: preparation, composite nanostructures, biodecoration and collective properties. Tokyo: Springer Nature; 2017. p. 125-210. 23. Dobrucka R. Biofabrication of Au–Pt nanoparticles using Asarum europaeum extract and evaluation of their activity in degradation of organic dyes. JIOPM 2018; 28:19531961.
24. Lu PJ, Fu WE, Huang SC, Lin CY, Ho ML, Chen YP, et al. Methodology for sample preparation and size measurement of commercial ZnO nanoparticles. J Food Drug Anal 2018; 26:628-636.
25. Su J, Zhou W, Xiang Y, Yuan R, Chai Y. Target-induced charge reduction of aptamers for visual detection of lysozyme based on positively charged gold nanoparticles†. Chem Commun 2013; 49:7659-7661.
26. Male KB, Li J, Chi Bun C, Ng S, Luong JHT. Synthesis and stability of fluorescent gold nanoparticles by sodium borohydride in the presence of mono-6-deoxy-6-pyridinium-β-cyclodextrin chloride. J Phys Chem C 2008; 112:443-451.  
27. Kashef N, Behzadian-Nejad Q, Najar Peerayeh SH, Mousavi Hosseini K, Moazzeni M, Esmaeeli Djavid G. Synthesis and characterization of Pseudomonas aeruginosa alginate– tetanus toxoid conjugate. J Med Microbiol 2006; 55:1441-1446.  
28. Agrawal N, Minj DK, Rani K. Estimation of total carbohydrate present in dry fruits. J Environ Sci Toxicol Food Technol 2015; 1:24-27.  
29. Farajnia S, Najar Peerayeh SH, Tanomand A, Majidi J, Goudarzi G, Naghili B, et al. Protective efficacy of recombinant exotoxin A—flagellin fusion protein against Pseudomonas aeruginosa infection. Can J Microbiol 2015; 61:60-64.
30. Ahmad T, Irfan M, Bhattacharjee S. Parametric study on gold nanoparticle synthesis using aqueous Elaise guineensis (oil palm) leaf extract: effect of precursor concentration. Procedia Eng 2016; 148:1396-1401.
31. Ben Tahar I, Fickers P, Dziedzic A, Płoch D, Skóra B, Kus‑Liśkiewicz M. Green pyomelanin-mediated synthesis of gold nanoparticles: modelling and design, physicochemical and biological characteristics. Microb Cell Fact 2019; 18:1-11.
32. Patri A, Umbreit T, Zheng J, Nagashima K, Goering P, Francke-Carroll S, et al. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J Appl Toxicol 2009; 29:662-672.
33. Honary S, Gharaei Fathabad E, Khorshidi Paji Z, Eslamifar M. A novel biological synthesis of gold nanoparticle by Enterobacteriaceae family. Trop J Pharm Res 2012; 11:887-891.
34. Keene AM, Allaway RJ, Sadrieh N, Tyner KM. Gold nanoparticle trafficking of typically excluded compounds across the cell membrane in JB6 Cl 41-5a cells causes assay interference. Nanotoxicology 2011; 5:469-478.
35. The national research council of the national academies. Guide for the care and use of laboratory animals. 8th ed. Washington DC: National Academies Press; 2011. p. 1-209.
36. Alizadeh H, Dezfulian M, Rahnema M, Fallah J, Esmaeili D. Protection of BALB/c mice against pathogenic Brucella abortus and Brucella melitensis by vaccination with recombinant Omp16. Iran J Basic Med Sci 2019; 22:1302-1307.
37. Ayazian Mavi S, Hossein Modarressi M, Mohebali M, Shojaee S, Zeraati H, Teimouri A, et al. Assessment of the immunogenicity and protective efficiency of a novel dual-promoter DNA vaccine, harboring SAG1 and GRA7 genes, from RH strain of Toxoplasma gondii in BALB/c mice. Infect Drug Resist 2019; 12:2519-2530.
38. Safari Zanjani L, Shapouri R, Dezfulian M, Mahdavi M, Shafee Ardestani M. Exotoxin A‑PLGA nanoconjugate vaccine against Pseudomonas aeruginosa infection: protectivity in murine model. World J Microb Biot 2019; 35:1-9.
39. Abu-baker NF, Masoud HA, Jaber BM. Synthesis, characterization and immunological properties of LPS-based conjugate vaccine composed of O-polysaccharide from Pseudomonas aeruginosa IATS 10 bound to recombinant exoprotein A. Adv Microbiol 2008; 35:110-122.
40. Cornacchione P, Scaringi L, Fettucciari K, Rosati E, Sabatini R, Orefici G, et al. Group B streptococci persist inside macrophages. Immunology 1998; 93:86-95.
41. Al-Zeer M, Masoud H. LPS-based conjugate vaccines composed of O-polysaccharide from Pseudomonas aeruginosa IATS 6 and 11 bound to a carrier protein. World J Microbiol Biotechnol 2007; 23:1541-1549.
42. Rivera M, Bryan LE, Hancock REW, Mcgroarty EJ. Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol 1988; 170:512-521.
43. Sharma A, Krause A, Worgall S. Recent Developments for Pseudomonas Vaccines. Hum Vaccines 2011; 7:999-1011.
44. Tanomand A, Farajnia S, Najar Peerayeh SH, Majidi J. Cloning, expression and characterization of recombinant exotoxin A-flagellin fusion protein as a new vaccine candidate against Pseudomonas aeruginosa infections. Iran Biomed J 2013; 17:1-7.
45. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007; 297:277-295.
46. Shiosaka S, Kiyama H, Wanaka A, Tohyama M. A new method for producing a specific and high titre antibody against glutamate using colloidal gold as a carrier. Brain Res 1986; 382:399-403.
47. Gregory AE, Williamson ED, Prior JL, Butcher W, Thompson IJ, Shaw AM, et al. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine 2012; 30:6777-6782.
48. Gregory AE, Judy BM, Qazi O, Blumentritt CA, Brown KA, Shaw AM, et al. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine 2015; 11:447-456.  
49. Torres AG, Gregory AE, Hatcher CL, Vinet-Oliphant H, Morici LA, Titball RW, et al. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 2015; 33:686-692.
50. Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8:1719-1735.
51. Brown KR, Fox AP, Natan MJ. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J Am Chem Soc 1996; 118:1154-1157.
52. Muruato LA, Tapia D, Hatcher CL, Kalita M, Brett PJ, Gregory AE, et al. Use of reverse vaccinology in the design and construction of nanoglycoconjugate vaccines against Burkholderia pseudomallei. Clin Vaccine Immunol 2017; 24:e00206-17.
53. Dos Santos Haupenthal DP, Mendes C, De Bem Silveira G, Zaccaron RP, Corrêa MEAB, Nesi RT, et al. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J Biomed Mater Res 2019; 108:103-115.
54. Safari D, Marradi M, Chiodo F, Dekker HATH, Shan Y, Adamo R, et al. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine 2012; 7:651-662.