Interference of Lactobacillus casei with Pseudomonas aeruginosa in the treatment of infected burns in Wistar rats

Document Type : Original Article


1 Department of Biology, Qom Branch, Islamic Azad University, Qom, Iran

2 Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran


Objective(s): Burns are the most common type of trauma with a high mortality rate worldwide. The use of modern and natural medicines, especially probiotic products, has been recently considered for cutaneous wound healing. The present study was designed to investigate the effect of Lactobacillus casei on wound healing caused by Pseudomonas aeruginosa.
Materials and Methods: In this study, the anti-adhesion activity of L. casei was examined by the glass slide method, and inhibitory substances in the cell-free supernatant (CFS) were quantified by high-performance liquid chromatography (HPLC). Following the induction of second-degree wounds, multidrug-resistant (MDR) P. aeruginosa was injected subcutaneously and directly on the burn. The animals were divided into four groups. The supernatant of L. casei was sprayed for treatment every day and wound healing was examined.
Results: Based on our findings, the supernatant of L. casei showed considerable anti-adhesion effects on P. aeruginosa. HPLC analysis indicated that the inhibitory effect of this supernatant can be due to four main organic acids including lactic acid, acetic acid, citric acid, and succinic acid. The effect of treatment on fibroblastic cells showed that the treated group by supernatant of L. casei had more fibroblastic cells compared with the non-treated group. Moreover, this supernatant increased the rate of fibroblastic cells, re-epithelialization in the wound area, and the largest thickness of the epidermis and dermis layers.
Conclusion: The present findings showed that L. casei supernatant significantly reduced inflammation and could be used to treat P. aeruginosa infection in second-degree burns.


1.    Onarımında BB, Bir K. Use of scalp flaps as a salvage procedure in reconstruction of the large defects of head and neck region. Turk Neurosurg 2012; 22:712-717.
2.    Rahimzadeh G, Seyedi DS, Fallah RF. Comparison of two types of gels in improving burn wound. Crescent J Medical Biol Sci 2014; 1:28-32.
3.    Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA, Finnerty CC, Chinkes DL, Jeschke MG. The leading causes of death after burn injury in a single pediatric burn center. Crit Care 2009; 13:1-7.
4.    Medina JL, Fourcaudot AB, Sebastian EA, Shankar R, Brown AW, Leung KP. Standardization of deep partial-thickness scald burns in C57BL/6 mice. Int J Burn Trauma 2018; 8:26-33.
5.    Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2009; 37:1528-1542.
6.    Abdullahi A, Amini-Nik S and Jeschke MG. Animal models in burn research. Cell Mol Life Sci 2014; 71:3241-3255.
7.    Abootaleb M, Zolfaghari MR, Arbab Soleimani N, Ghorbanmehr N, Yazdian MR. Biofilm formation with microtiter plate 96 and pslA detection of Pseudomonas aeruginosa isolates from clinical samples in Iran. Int J Adv Biol Biomed Res 2020; 8:58-66.
8.    Gonzalez MR, Fleuchot B, Lauciello L, Jafari P, Applegate LA, Raffoul W, et al. Effect of human burn wound exudate on Pseudomonas aeruginosa virulence. Msphere 2016; 1: e00111-15.
    9.    Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O’Toole GA. Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 2010; 13:207-212.
10.    Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. J Mol Sci 2013; 14:20983-21005.
11.    Mir Z, Farahani NN, Abbasian S, Alinejad F, Sattarzadeh M, Pouriran R, et al. The prevalence of exotoxins, adhesion, and biofilm-related genes in Staphylococcus aureus isolates from the main burn center of Tehran, Iran. Iran J Basic Med Sci 2019; 22:1267-1274.
12.    Peleg AY, Hooper DC. Hospital-acquired infections due to Gram-negative bacteria. N Engl J Med 2010; 362:1804–1813.
13.    Rahimzadeh G, Seyedi DS, Fallah RF. Comparison of two types of gels in improving burn wound. J Med Biol Sci 2014; 1:28-32.
14.    Tahir SM, Makhdoom A, Awan S, Ali SA. Role of probiotics in the management of burns patients. World J Med Sci 2014; 11:417-421.
15.    Wu G, Xiao Y, Wang C, Hong X, Sun Y, Ma B, et al. Risk factors for acute kidney injury in patients with burn injury: a meta-analysis and systematic review. J Burn Care Res 2017; 38:271-282.
16.    Medina JL, Fourcaudot AB, Sebastian EA, Shankar R, Brown AW, Leung KP. Standardization of deep partial-thickness scald burns in C57BL/6 mice. Int J Burns Trauma 2018; 8:26-33.
17.    Bekele T, Tesfaye A, Sewunet T, Waktola HD. Pseudomonas aeruginosa isolates and their antimicrobial susceptibility pattern among catheterized patients at Jimma University Teaching Hospital, Jimma, Ethiopia. BMC Res Notes 2015; 8:488-491.
18.    Abootaleb M, Arbab Soleimani N, Zolfaghari MR, Ghorbanmehr N, Yazdian MR.    Antagonistic and anti-adhesive effects of two Lactobacillus probiotics against Pseudomonas aeruginosa isolated from burn patients. Malays J Microbiol 2020; 16:211-218.
19.    Soliman AH, Sharoba AM, Bahlol HE, Soliman AS, Radi OM. Evaluation of Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum for probiotic characteristics. Middle East J Appl Sci 2015; 5:10-18.
20.    Tahmourespour A, Salehi R, Kermanshahi RK. Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells. Braz J Microbiol 2011; 42:330-339.
21.    Fratesi SE, Lynch FL, Kirkland BL, Brown LR. Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the carter sandstone. J Sediment Res 2004; 74:858-867.
22.    Kos BV, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J App Microbiol 2003; 94:981-987.
23.    del Valle MJ, Laiño JE, de Giori GS, LeBlanc JG. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res Int 2014; 62:1015-1019.
24.    Gezginc Y, Topcal F, Comertpay S, Akyol I. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional turkish yogurts using HPLC. J Dairy Sci 2015; 98:1426-1434.
25.    Sayar H, Gergerlioglu N, Seringec N, Ozturk P, Bulbuloglu E, Karabay G. Comparison of efficacy of topical phenytoin with hypericin in second-degree burn wound healing: an experimental study in rats. Med Sci Monit 2014; 20:36-46.
26.    Firmino F, Almeida AM, Alves GD, Grandeiro DD, Penna LH. Scientific production on the applicability of phenytoin in wound healing. Rev esc enferm. USP 2014; 48:162-169.
27.    Barzegari AA, Hashemzaei M, Majdani R, Alihemmati AR. Effects of topical treatment of second-degree burn wounds with Lactobacillus acidophilus on the wound healing process in male rats. Int J Pharm Biomed 2017; 3:23-30.
28.    Huseini HF, Rahimzadeh G, Fazeli MR, Mehrazma M, Salehi M. Evaluation of wound healing activities of kefir products. Burns 2012; 38:719-723.
29.    Abadi AD, Vaheb M, Rakhshani MH, Tofighian T. Comparison of the effect of nanosilver spray and 1% silver sulfadiazine cream on the healing of second-degree burn wound. Transl Biomed 2018; 9:1-12.
30.    Yee A, Harmon J, Yi S. Quantitative monitoring wound healing status through three-dimensional imaging on mobile platforms. J Amer College Clin Wound Specialists 2016; 8:21-27.
31.    Ansari R, Arami R. Effect of teucrium polium and boswellia serrata extracts on cotaneus burn wound healing in balb/c mice. J Shahrekord Univ Med Sci 2010; 12:49-53.
32.    Rezaie A, Mohajeri D, Muhammad Nejad S, Muhammad Nejad A, Taghizadeh-Jahed M, Khorrami A, et al. Study of histometric and histopathological effects of essential oil of pelargonium roseum in comparison with phenytoin after surgical trauma on rat’s skin. Pharm Sci 2008; 12:11-19.
33.    Barzegari AA, Hashemzaei M, Alihemmati AR, Soltani S, Naseri B. Effects of Lactobacillus rhamnosus (ATCC 7469) ointment on second-degree burn wound in wistar rat. J Res Med Sci 2018; 5:1-9.
34.    Wu G, Xiao Y, Wang C, Hong X, Sun Y, Ma B, et al. Risk factors for acute kidney injury in patients with burn injury: a meta-analysis and systematic review. J Burn Care Res 2017; 38:271-282.
35.    Siryaporn A, Kuchma SL, O’Toole GA, Gitai Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci 2014; 111:16860-16865.
36.    Formosa-Dague C, Castelain M, Martin-Yken H, Dunker K, Dague E, Sletmoen M. The role of glycans in bacterial adhesion to mucosal surfaces: How can single-molecule techniques advance our understanding?. Microorganisms 2018; 6:39-65.
37.    Björnham O, Fällman EG, Axner O, Ohlsson J, Nilsson UJ, Borén T, et al. Measurements of the binding force between the helicobacter pylori adhesin babA and the lewis b blood group antigen using optical tweezers. J Biomed Opt 2005; 10:044024.
38.    Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 2014; 11:4745-4767.
39.    Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Mi 2017; 7:39-67.
40.    Goltermann L, Tolker-Nielsen T. Importance of the exopolysaccharide matrix in antimicrobial tolerance of Pseudomonas aeruginosa aggregates. Antimicrob Agents Chemother 2017; 61:e02696-16.
41.    Harimawan A, Ting YP. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion. Colloids Surf B. 2016; 146:459-467.
42.    Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 2014; 3:596-632.
43.    Jham GN, Fernandes SA, Garcia CF, Palmquist D. Comparison of GC and HPLC for quantification of organic acids in two jaboticaba (Myrciaria) fruit varieties. Quim Nova 2007; 30:1529-1534.
44.    Vodnar DC, Paucean A, Dulf FV, Socaciu C. HPLC characterization of lactic acid formation and FTIR fingerprint of probiotic bacteria during fermentation processes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2010; 38:109-113.
45.    Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci 2014; 6:189-194.
46.    Bulgasem BY, Hassan Z, Abdalsadiq NK, Yusoff WM, Lani MN. Anti-adhesion activity of Lactic acid bacteria supernatant against human pathogenic Candida species biofilm. Health Sci J 2015; 9:1-9.
47.    Sivaraj A, Sundar R, Manikkam R, Parthasarathy K, Rani U, Kumar V. Potential applications of Lactic acid bacteria and bacteriocins in anti-mycobacterial therapy. Asian Pac J Trop Med 2018; 11:453-459.
48.    Liu Y, Wang L, Zhou X, Hu S, Zhang S, Wu H. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. Int J Antimicrob Agents 2011; 37:33-38.
49.    Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 2019; 103:6463-6472.
50.    Bienenstock J, Gibson G, Klaenhammer TR, Walker WA, Neish AS. New insights into probiotic mechanisms: A harvest from functional and metagenomic studies. Gut microbes 2013; 4:94-100.