MicroRNAs may provide new strategies in the treatment and diagnosis of diabetic retinopathy: Importance of VEGF

Document Type : Review Article


1 Department of Clinical Biochemistry and Medical Genetics, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

2 Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

4 Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA

5 Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA


Diabetic retinopathy (DR) is ocular microvascular complications of diabetes mellitus. Along with the increasing prevalence of diabetes worldwide, DR has come into the major cause of human blindness. Several studies have demonstrated the important roles of the expression alteration in the proteins contributed to vascular dysfunction during DR, especially vascular endothelial growth factor (VEGF). However, there is a need for further mechanistic research in this context to design new therapeutic and diagnostic programs. MicroRNAs (miRNAs, miRs) have been introduced as key controllers of gene expression in a variety of biological processes including differentiation, proliferation, and metabolism. Altered expression of miRNAs during DR development indicates a close relationship between these regulatory molecules and DR through regulating gene expressions. This review discusses and updates the functions of miRNA-dependent pathways and key roles of VEGF in the DR, which may increase our understanding and ability to target these small but important molecules to efficiently improve therapeutic and diagnostic approaches.


1. Zhang L, Chen B, Tang L. Metabolic memory: mechanisms and implications for diabetic retinopathy. Diabetes Res Clin Pract 2012;96:286-293.
2. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556-564.
3. Gudla S, Tenneti D, Pande M, Tipparaju SM. Diabetic Retinopathy: Pathogenesis, Treatment, and Complications.  Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham; 2018.p. 83-94.
4. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35:556-564.
5. Hussein KA, Choksi K, Akeel S, Ahmad S, Megyerdi S, El-Sherbiny M, et al. Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy. Exp Eye Res 2014;125:79-88.
6. Dhoot DS, Baker K, Saroj N, Vitti R, Berliner AJ, Metzig C, et al. Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular edema: post hoc analyses from VISTA and VIVID. Ophthalmology 2018;125:51-56.
7. Noda K, Nakao S, Zandi S, Sun D, Hayes K, Hafezi-Moghadam A. Retinopathy in a novel model of metabolic syndrome and type 2 diabetes: new insight on the inflammatory paradigm. FASEB J 2014;28:2038-2046.
8. D’Amico AG, Maugeri G, Rasà DM, La Cognata V, Saccone S, Federico C, et al. NAP counteracts hyperglycemia/hypoxia induced retinal pigment epithelial barrier breakdown through modulation of HIFs and VEGF expression. J Cell Physiol 2018;233:1120-1128.
9. Zhou Z, Ju H, Sun M, Chen H. Serum vascular endothelial growth factor levels correlate with severity of retinopathy in diabetic patients: a systematic review and meta-analysis. Dis Markers 2019; 2019:9401628.
10.    Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 2017;37:BSR20171157.
11.    Hosseini SM, Soltani BM, Tavallaei M, Mowla SJ, Tafsiri E, Bagheri A, et al. Clinically significant dysregulation of hsa-miR-30d-5p and hsa-let-7b expression in patients with surgically resected non-small cell lung cancer. Avicenna J Med Biotechnol 2018;10:98-104.
12.    Mishan MA, Tabari MAK, Zargari M, Bagheri A. MicroRNAs in the anticancer effects of celecoxib: A systematic review. Eur J Pharmacol 2020;882:173325.
13.    Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin Biochem 2019;73:1-10.
14.    Cho N, Shaw J, Karuranga S, Huang Y, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271-281.
15.    Lamparter J, Raum P, Pfeiffer N, Peto T, Höhn R, Elflein H, et al. Prevalence and associations of diabetic retinopathy in a large cohort of prediabetic subjects: the Gutenberg Health Study. J Diabetes Complications 2014;28:482-487.
16.    Zhang H, Jia L, Hou X, Lu J, Lu H, Du J, et al. Prevalence of and risk factors associated with diabetic retinopathy in pre-diabetic and diabetic population in Shanghai community. Zhonghua Yi Xue Za Zhi 2009;89:1749-1752.
17.    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-820.
18.    Kowluru RA, Kowluru A, Mishra M, Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015;48:40-61.
19.    Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1β, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy. Folia Med (Plovdiv) 2011;53:44-50.
20.    Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011;52:1156-1163.
21.    Simo R, Hernandez C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 2014;25:23-33.
22.    Hammes H-P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 2018;61:29-38.
23.    Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, et al. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res Clin Pract 2020;161:108067.
24.    Rübsam A, Parikh S, Fort P. Role of inflammation in diabetic retinopathy. Int J Mol Sci 2018;19:942-992.
25.    Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 2014;1311:174-190.
26.    Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 2013;34:19-48.
27.    Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2016;51:156-186.
28.    Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci 2017;58:470-480.
29.    Hoffmann S, Friedrichs U, Eichler W, Rosenthal A, Wiedemann P. Advanced glycation end products induce choroidal endothelial cell proliferation, matrix metalloproteinase-2 and VEGF up-regulation in vitro. Graefes Arch Clin Exp Ophthalmol 2002;240:996-1002.
30.    Platt DH, Bartoli M, El-Remessy AB, Al-Shabrawey M, Lemtalsi T, Fulton D, et al. Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radic Biol Med 2005;39:1353-1361.
31.    Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J-x. Unbalanced expression of VEGF and PEDF in ischemia‐induced retinal neovascularization. FEBS Lett 2001;489:270-276.
32.    He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 1999;274:25130-25135.
33.    Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai N-t, Caldwell RB. VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J 2003;17:752-754.
34.    Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH, et al. Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 2005;6:511-524.
35.    Ishida S, Usui T, Yamashiro K, Kaji Y, Amano S, Ogura Y, et al. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 2003;198:483-489.
36.    Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 1997;15:2169-2177.
37.    Gong C-Y, Lu B, Sheng Y-C, Yu Z-Y, Zhou J-Y, Ji L-L. The development of diabetic retinopathy in Goto-Kakizaki rat and the expression of angiogenesis-related signals. Chin J Physiol 2016;59:100-108.
38.    Zhang ZH, Chen QZ, Jiang F, Townsend TA, Mao CJ, You CY, et al. Changes in TL1A levels and associated cytokines during pathogenesis of diabetic retinopathy. Mol Med Rep 2017;15:573-580.
39.    Ma Y, Zhang Y, Zhao T, Jiang Y-r. Vascular endothelial growth factor in plasma and vitreous fluid of patients with proliferative diabetic retinopathy patients after intravitreal injection of bevacizumab. Am J Ophthalmol 2012;153:307-313.
40.    Ghalehnoei H, Bagheri A, Fakhar M, Mishan MA. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur J Clin Microbiol Infect Dis 2020; 39:395-402.
41.    Chipman LB, Pasquinelli AE. miRNA targeting: Growing beyond the seed. Trends Genet 2019; 35:215-222.
42.    Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli A, Bardania H, Bagheri A, et al. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019;120:12141-12155.
43.    Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR‐192 family in cancer. Genes Chromosomes Cancer 2020;59:722-735.
44.    Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007;56:2938-2945
45.    El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E. miR-375 targets 3′-phosphoinositide–dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes 2008;57:2708-2717.
46.    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011;48:61-69.
47.    Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006;281:26932-26942.
48.    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011;474:649-653.
49.    Xiong F, Du X, Hu J, Li T, Du S, Wu Q. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis. Curr Eye Res 2014;39:720-729.
50.    Zampetaki A, Willeit P, Burr S, Yin X, Langley SR, Kiechl S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes 2016;65:216-227.
51.    Hua Z, Lv Q, Ye W, Wong C-KA, Cai G, Gu D, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006;1:e116.
52.    Qin B, Liu J, Liu S, Li B, Ren J. MiR-20b targets AKT3 and modulates vascular endothelial growth factor-mediated changes in diabetic retinopathy. Acta Biochim Biophys Sin (Shanghai) 2016;48:732-740.
53.    Dasare AP, Gondaliya P, Srivastava A, Kalia K. A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse? J Diabetes Metab Disord 2019;18:243-254.
54.    Ito T, Yang M, May WS. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 1999;274:15427-15432.
55.    Silva VA, Polesskaya A, Sousa TA, Corrêa VM, André ND, Reis RI, et al. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011;17:2228-2240.
56.    Lin X, Zhou X, Liu D, Yun L, Zhang L, Chen X, et al. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN. In Vitro Cell Dev Biol Anim 2016;52:419-426.
57.    Zhang J, Zeng Y, Chen J, Cai D, Chen C, Zhang S, et al. miR‑29a/b cluster suppresses high glucose‑induced endothelial‑mesenchymal transition in human retinal microvascular endothelial cells by targeting Notch2. Exp Ther Med 2019;17:3108-3116.
58.    Zhang LQ, Cui H, Wang L, Fang X, Su S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp Mol Pathol 2017;102:296-302.
59.    Fouda AY, Artham S, El-Remessy AB, Fagan SC. Renin–angiotensin system as a potential therapeutic target in stroke and retinopathy: experimental and clinical evidence. Clin Sci (Lond) 2016;130:221-238.
60.    Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2011;52:4402-4409.
61.    Zeng J, Xiong Y, Li G, Liu M, He T, Tang Y, et al. MiR-21 is overexpressed in response to high glucose and protects endothelial cells from apoptosis. Exp Clin Endocrinol Diabetes 2013;121:425-430.
62.    Usui-Ouchi A, Ouchi Y, Kiyokawa M, Sakuma T, Ito R, Ebihara N. Up-regulation of Mir-21 levels in the vitreous humor is associated with development of proliferative vitreoretinal disease. PLoS One 2016;11:e0158043.
63.    Lou H, Wang S, Guo T, Yang Y. Role of miR-21 in rats with proliferative diabetic retinopathy via TGF-β signaling pathway. Eur Rev Med Pharmacol Sci 2019;23:9-16.
64.    Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi Y, Rajala RV, et al. Pathogenic role of microRNA-21 in diabetic retinopathy through down-regulation of PPARα. Diabetes 2017;66:1671-1682.
65.    Báez-Vega PM, Vargas IME, Valiyeva F, Encarnación-Rosado J, Roman A, Flores J, et al. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget 2016;7:36321-36337.
66.    Jiang Q, Lv X-M, Yuan Y, Wang L. Plasma microRNA-21 expression: an indicator for the severity of type 2 diabetes with diabetic retinopathy. Biosci Rep 2017;37:BSR20160589.
67.    Hou Q, Tang J, Wang Z, Wang C, Chen X, Hou L, et al. Inhibitory effect of microRNA-34a on retinal pigment epithelial cell proliferation and migration. Invest Ophthalmol Vis Sci 2013;54:6481-6488.
68.    Hou Q, Zhou L, Tang J, Ma N, Xu A, Tang J, et al. LGR4 is a direct target of microRNA-34a and modulates the proliferation and migration of retinal pigment epithelial ARPE-19 cells. PLoS One 2016;11:e0168320.
69.    He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 2007;7:819-822.
70.    Thounaojam MC, Jadeja RN, Warren M, Powell FL, Raju R, Gutsaeva D, et al. MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature senescence through mitochondrial dysfunction and loss of antioxidant activities. Antioxidants (Basel) 2019;8:328-346.
71.    Mortuza R, Feng B, Chakrabarti S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 2014;57:1037-1046.
72.    Tang WX, Wu WH, Zeng XX, Bo H, Huang SM. Early protective effect of mitofusion 2 over-expression in STZ-induced diabetic rat kidney. Endocrine 2012;41:236-247.
73.    Zhang R, Garrett Q, Zhou H, Wu X, Mao Y, Cui X, et al. Up-regulation of miR-195 accelerates oxidative stress-induced retinal endothelial cell injury by targeting mitofusin 2 in diabetic rats. Mol Cell Endocrinol 2017;452:33-43.
74.    Liu P, Peng QH, Tong P, Li WJ. Astragalus polysaccharides suppresses high glucose-induced metabolic memory in retinal pigment epithelial cells through inhibiting mitochondrial dysfunction-induced apoptosis by regulating miR-195. Mol Med 2019;25:21-43.
75.    Wang J, Zhang J, Chen X, Yang Y, Wang F, Li W, et al. miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Exp Eye Res 2018;168:89-99.
76.    Ye Z, Li ZH, He SZ. miRNA-1273g-3p involvement in development of diabetic retinopathy by modulating the autophagy-lysosome pathway. Med Sci Monit 2017;23:5744-5751.
77.    O’connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010;33:607-619.
78.    Yang T, Song S, Xue H, Shi D, Liu C, Liu H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155. Eur Rev Med Pharmacol Sci 2015;19:2010-2015.
79.    Zou H-L, Wang Y, Gang Q, Zhang Y, Sun Y. Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2017;255:1159-1166.
80.    Zhang ZZ, Qin XH, Zhang J. MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway. Am J Physiol Endocrinol Metab 2019;316:E1050-E1060.
81.    Qian C, Liang S, Wan G, Dong Y, Lu T, Yan P. Salidroside alleviates high-glucose-induced injury in retinal pigment epithelial cell line ARPE-19 by down-regulation of miR-138. RNA Biol 2019;16:1461-1470.
82.    Mao XB, Cheng YH, Xu YY. miR‑204‑5p promotes diabetic retinopathy development via down-regulation of microtubule‑associated protein 1 light chain 3. Exp Ther Med 2019;17:2945-2952.
83.    Shao J, Fan G, Yin X, Gu Y, Wang X, Xin Y, et al. A novel transthyretin/STAT4/miR-223-3p/FBXW7 signaling pathway affects neovascularization in diabetic retinopathy. Mol Cell Endocrinol 2019; 498:110541.
84.    Cui C, Li Y, Liu Y. Down-regulation of miR-377 suppresses high glucose and hypoxia-induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1. Human Cell 2019;32:260-274.
85.    Ke N, Pi LH, Liu Q, Chen L. Long noncoding RNA SNHG7 inhibits high glucose-induced human retinal endothelial cells angiogenesis by regulating miR-543/SIRT1 axis. Biochem Biophys Res Commun 2019;514:503-509.
86.    Zhao S, Li T, Li J, Lu Q, Han C, Wang N, et al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 2016;59:644-654.
87.    McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regulates vascular endothelial growth factor–mediated alterations in diabetic retinopathy. Diabetes 2011;60:1314-1323.
88.    Gomaa AR, Elsayed ET, Moftah RF. MicroRNA-200b expression in the vitreous humor of patients with proliferative diabetic retinopathy. Ophthalmic Res 2017;58:168-175.
89.    Ruiz MA, Feng B, Chakrabarti S. Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy. PLoS One 2015;10:e0123987.
90.    Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of microRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep 2017:BSR20160572.
91.    Murray AR, Chen Q, Takahashi Y, Zhou KK, Park K, Ma JX. MicroRNA-200b down-regulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model. Invest Ophthalmol Vis Sci 2013;54:1689-1697.
92.    Jiang Q, Zhao F, Liu X, Li R, Liu J. Effect of miR-200b on retinal endothelial cell function under high glucose environment. Int J Clin Exp Pathol 2015;8:10482–10487.
93.    Ding Y, Hu Z, Luan J, Lv X, Yuan D, Xie P, et al. Protective effect of miR-200b/c by inhibiting vasohibin-2 in human retinal microvascular endothelial cells. Life Sci 2017;191:245-252.
94.    Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, et al. miR-146a–mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 2011;60:2975-2984.
95.    Ye E-A, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017;139:15-22.
96.    Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006;103:12481-12486.
97.    Cowan C, Muraleedharan CK, O’Donnell JJ, Singh PK, Lum H, Kumar A, et al. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Invest Ophthalmol Vis Sci 2014;55:4944-4951.
98.    Wang Q, Bozack SN, Yan Y, Boulton ME, Grant MB, Busik JV. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Invest Ophthalmol Vis Sci 2014;55:3986-3994.
99.    Zhuang P, Muraleedharan CK, Xu S. Intraocular delivery of miR-146 inhibits diabetes-induced retinal functional defects in diabetic rat model. Invest Ophthalmol Vis Sci 2017;58:1646-1655.
100. Fulzele S, El-Sherbini A, Ahmad S, Sangani R, Matragoon S, El-Remessy A, et al. MicroRNA-146b-3p regulates retinal inflammation by suppressing adenosine deaminase-2 in diabetes. Biomed Res Int 2015;2015:846501.
101. Samra YA, Saleh HM, Hussein KA, Elsherbiny NM, Ibrahim AS, Elmasry K, et al. Adenosine deaminase-2–induced hyperpermeability in human retinal vascular endothelial cells is suppressed by microrna-146b-3p. Invest Ophthalmol Vis Sci 2017;58:933-943.
102. Gong Q, Xie Jn, Li Y, Liu Y, Su G. Enhanced ROBO4 is mediated by up‐regulation of HIF‐1α/SP1 or reduction in miR‐125b‐5p/miR‐146a‐5p in diabetic retinopathy. J Cell Mol Med 2019;23:4723-4737.
103. Wang Y, Yan H. MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy. Sci Rep 2016;6:26909.
104. Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 2011;91:471-477.
105. Ye P, Liu J, He F, Xu W, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci2014;11:17-23.
106. Heirani-Tabasi A, Mirahmadi M, Mishan MA, Naderi-Meshkin H, Toosi S, Matin MM, et al. Comparison the effects of hypoxia-mimicking agents on migration-related signaling pathways in mesenchymal stem cells. Cell Tissue Bank 2020;21:643-653.
107. Heirani-Tabasi A, Toosi S, Mirahmadi M, Mishan MA, Bidkhori HR, Bahrami AR, et al. Chemokine receptors expression in MSCs: comparative analysis in different sources and passages. Tissue Eng Regen Med 2017;14:605-615.
108. Mazzeo A, Beltramo E, Iavello A, Carpanetto A, Porta M. Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy. Acta Diabetol 2015;52:1113-1119.
109. Rezk NA, Sabbah NA, Saad MS. Role of microRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt. IUBMB Life. 2016;68:452-458.
110. Ye E-A, Steinle JJ. miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling 3. J Neuroinflammation 2015;12:44-60.
111. Liu H, Meng Y, Ren Y, Sun P. MicroRNA-15b participates in diabetic retinopathy in rats through regulating IRS-1 via Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 2018;22:5063-5070.
112. Ye E-A, Liu L, Jiang Y, Jan J, Gaddipati S, Suvas S, et al. miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J Neuroinflammation 2016;13:305-313.
113. Wang Q, Navitskaya S, Chakravarthy H, Huang C, Kady N, Lydic TA, et al. Dual anti-inflammatory and anti-angiogenic action of miR-15a in diabetic retinopathy. EBioMedicine 2016;11:138-150.
114. Galicia JC, Naqvi AR, Ko C-C, Nares S, Khan AA. MiRNA-181a regulates Toll-like receptor agonist-induced inflammatory response in human fibroblasts. Genes Immun 2014;15:333-337.
115. Xu Y, Xie S, Ma Y. Low expression of microRNA-15b promotes the proliferation of retinal capillary endothelial cells and pericytes by up-regulating VEGFA in diabetic rats. Eur Rev Med Pharmacol Sci 2019;23:6018-6025.
116. Gong Q, Li F, Su G. Up-regulated VEGF and Robo4 correlate with the reduction of miR-15a in the development of diabetic retinopathy. Endocrine 2019;65:35-45.
117. Liu P, Jia S-B, Shi J-M, Li W-J, Tang L-S, Zhu X-H, et al. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Biosci Rep 2019;39:BSR20181469.
118. Deng H-f, Wang S, Wang X-l, Li L, Xie F, Zeng Z-w, et al. Puerarin protects against lps-induced vascular endothelial cell hyperpermeability via preventing down-regulation of endothelial cadherin. Inflammation 2019;42:1504-1510.
119. Dai C, Gong Q, Cheng Y, Su G. Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019;39:BSR20190513.
120. Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 2010;17:F19-F36.
121. Xia X, Ahmad I. let-7 microRNA regulates neurogliogenesis in the mammalian retina through Hmga2. Dev Biol 2016;410:70-85.
122. Zhou Q, Frost RJ, Anderson C, Zhao F, Ma J, Yu B, et al. Let-7 contributes to diabetic retinopathy but represses pathological ocular angiogenesis. Mol Cell Biol 2017;37:e00001-17.
123. Dai C, Jiang S, Chu C, Xin M, Song X, Zhao B. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp Mol Pathol 2019;106:123-130.
124. Zhang J, Cui C, Xu H. Down-regulation of miR-145-5p elevates retinal ganglion cell survival to delay diabetic retinopathy progress by targeting FGF5. Biosci Biotechnol Biochem 2019;83:1655-1662.
125. Zhao R, Qian L, Jiang L. miRNA-dependent cross-talk between VEGF and Ang-2 in hypoxia-induced microvascular dysfunction. Biochem Biophys Res Commun 2014;452:428-435.
126. Ling S, Birnbaum Y, Nanhwan MK, Thomas B, Bajaj M, Ye Y. MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina. Cell Signal 2013;25:2840-2847.
127. Tang X, Dai Y, Wang X, Zeng J, Li G. MicroRNA‑27a protects retinal pigment epithelial cells under high glucose conditions by targeting TLR4. Exp Ther Med 2018;16:452-458.
128. Liu C-H, Sun Y, Li J, Gong Y, Tian KT, Evans LP, et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization. Proc Natl Acad Sci U S A 2015;112:12163-12168.
129. Chen P, Miao Y, Yan P, Wang XJ, Jiang C, Lei Y. MiR‐455‐5p ameliorates HG‐induced apoptosis, oxidative stress and inflammatory via targeting SOCS3 in retinal pigment epithelial cells. J Cell Physiol 2019;234:21915-21924.
130. Dong N, Wang Y. MiR-30a regulates S100A12-induced retinal microglial activation and inflammation by targeting NLRP3. Curr Eye Res 2019;44:1236-1243.
131. Thames BE, Barr JW, Suchodolski JS, Steiner JM, Heilmann RM. Prospective evaluation of S100A12 and S100A8/A9 (calprotectin) in dogs with sepsis or the systemic inflammatory response syndrome. J Vet Diagn Invest 2019;31:645-651.
132. Shao J, Pan X, Yin X, Fan G, Tan C, Yao Y, et al. KCNQ1OT1 affects the progression of diabetic retinopathy by regulating miR‐1470 and epidermal growth factor receptor. J Cell Physiol 2019;234:17269-17279.
133. Wu J-h, Wang Y-h, Wang W, Shen W, Sang Y-z, Liu L, et al. MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 2016;73:41-52.