Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review

Document Type : Review Article

Authors

1 Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Metabolic syndrome (MetS), also known as syndrome X, is a significant risk factor for cardiovascular disease incidence and mortality. Increasing age, obesity, physical inactivity, smoking, and positive family history are the risk factors associated with MetS, which increases the risk of diabetes, cardiovascular disease, hypertension, hyperlipidemia, and obesity. Chemical compounds in the treatment of metabolic complications are associated with a lack of efficacy and severe side effects. Numerous studies have described the importance of herbs and natural products to treat human diseases. Therefore, nowadays, herbs-based diets and herbal medicines are recommended for the management of various diseases. The protective effects of several herbs have been reported against MetS such as rosemary, avocado, and silymarin. Eggplant (Solanum melongena) is a rich source of phenolic and alkaloid compounds. It possesses various pharmacological effects, including, anti-oxidant, antidiabetic, antihypertensive, and antihyperlipidemic, which has been supported by numerous investigations. In this review, we evaluated the effects of eggplant on MetS and its complications comprising diabetes, high blood pressure, hyperlipidemia, and obesity.
According to these studies, eggplant can control diabetes through the anti-oxidative properties and inhibition of α-amylase and α-glucosidase activity. Also, eggplant has exerted an antihypertensive effect via ACE inhibitory activity. Eggplant may have shown protective effects on hyperlipidemia and obesity via the induction of lipoprotein lipase activity and the reduction of pancreatic lipase activity.Eggplant can be useful in the treatment of MetS and its complications.

Keywords


1. Obunai K, Jani S, Dangas GD. Cardiovascular morbidity and mortality of the metabolic syndrome. Med Clin North Am 2007;91:1169-1184.
2. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018;21:439-448.
3. Mahdian D, Abbaszadeh-Goudarzi K, Raoofi A, Dadashizadeh G, Abroudi M, Zarepour E, et al. Effect of Boswellia species on the metabolic syndrome: a review. Iran J Basic Med Sci 2020;23:1374-1381.
4. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet 2007;369:2059-2061.
5. Bray GA, Bellanger T. Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 2006;29:109-117.
6. Eisvand F, Razavi BM, Hosseinzadeh H. The effects of Ginkgo biloba on metabolic syndrome: a review. Phytother Res 2020;34:1798-1811.
7. Takahara M, Shimomura I. Metabolic syndrome and lifestyle modification. Rev Endocr Metab Disord 2014;15:317-327.
8. Koren D, Dumin M, Gozal D. Role of sleep quality in the metabolic syndrome. Diabetes Metab Syndr Obes 2016;9:281-310.
9. Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytother Res 2017;31:1173-1182.
10.    Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn-Schmiedeberg’s Arch Pharmacol 2016;389:931-949.
11.    Vahabzadeh M, Amiri N, Karimi G. Effects of silymarin on metabolic syndrome: a review. J Sci Food Agr 2018;98:4816-4823.
12.    Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome: a comprehensive systematic review. Phytother Res 2017;31:819-837.
13.    Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran J Basic Med Sci 2016;19:1258-1270.
14.    Esmaeilzadeh D, Razavi BM, Hosseinzadeh H. Effect of Abelmoschus esculentus (okra) on metabolic syndrome: A review. Phytother Res 2020;34:2192-2202.
15.    Cericola F, Portis E, Toppino L, Barchi L, Acciarri N, Ciriaci T, et al. The population structure and diversity of eggplant from Asia and the Mediterranean basin. PLoS One 2013;8:e73702.
16.    Daunay MC. Eggplant. Vegetables II: Springer; New York 2008;163-220.
17.    Sukprasansap M, Sridonpai P, Phiboonchaiyanan PP. Eggplant fruits protect against DNA damage and mutations. Mutat Res 2019;813:39-45.
18.    Niño-Medina G, Urías-Orona V, Muy-Rangel MD, Heredia JB. Structure and content of phenolics in eggplant (Solanum melongena) - a review. S Afr J Bot 2017;111:161-169.
19.    Gürbüz N, Uluişik S, Frary A, Frary A, Doğanlar S. Health benefits and bioactive compounds of eggplant. Food Chem 2018;268:602-610.
20.    Magioli C, Mansur E. Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Bot Bras 2005;19:139-148.
21.    Guimarães P, Galvão A, Batista C, Azevedo G, Oliveira R, Lamounier R, et al. Eggplant (Solanum melongena) infusion has a modest and transitory effect on hypercholesterolemic subjects. Braz J Med Biol Res 2000;33:1027-1036.
22.    Patel K, Jain A, Patel DK. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: a concise report. J Acute Dis 2013;2:169-178.
23.    Parichatikanond W, Pinthong D, Mangmool S. Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med 2012;78:1626-1632.
24.    Gonzalez AA, Salinas-Parra N, Cifuentes-Araneda F, Reyes-Martinez C. Vasopressin actions in the kidney renin angiotensin system and its role in hypertension and renal disease. Vitam Horm 2020;113:217-238.
25.    Morais FS, Canuto KM, Ribeiro PR, Silva AB, Pessoa OD, Freitas CD, et al. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: in vitro and in silico assays. J Ethnopharmacol 2020;253:112644-112652.
26.    Demir Y, Durmaz L, Taslimi P, Gulçin İ. Antidiabetic properties of dietary phenolic compounds: inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnol Appl Biochem 2019;66:781-786.
27.    Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, et al. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. J Agr Food Chem 2012;60:9130-9136.
28.    Ong KW, Hsu A, Tan BKH. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PloS One 2012;7:32718-32729.
29.    Sudeep H, Venkatakrishna K, Patel D, Shyamprasad K. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement Altern Med 2016;16:274-279.
30.    Kaur C, Kapoor HC. Anti‐oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Tech 2002;37:153-161.
31.    Im K, Lee JY, Byeon H, Hwang KW, Kang W, Whang WK, et al. In vitro anti-oxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food Agr Immunol 2016;27:758-771.
32.    Gubarev MI, Enioutina EY, Taylor JL, Visic DM, Daynes RA. Plant‐derived glycoalkaloids protect mice against lethal infection with Salmonella typhimurium. Phytother Res 1998;12:79-88.
33.    Das J, Lahan J, Srivastava R. Solanum melongena: a potential source of antifungal agent. Indian J Microbiol 2010;50:62-69.
34.    Qonita NR, Zulhaidah M, Tjahjono HA. The effect of eggplant (Solanum melongena L.) extract peroal against blood glucose level of white rat (Ratus novergicus) wistar strain diabetic model. Int J Pediatr Endocrinol 2013;2013:O33
35.    Yamaguchi S, Matsumoto K, Koyama M, Tian S, Watanabe M, Takahashi A, et al. Antihypertensive effects of orally administered eggplant (Solanum melongena) rich in acetylcholine on spontaneously hypertensive rats. Food Chem 2019;276:376-382.
36.    Scorsatto M, Rosa G, Raggio Luiz R, da Rocha Pinheiro Mulder A, Junger Teodoro A, Moraes de Oliveira GM. Effect of eggplant flour (Solanum melongena L.) associated with hypoenergetic diet on anti-oxidant status in overweight women‐a randomised clinical trial. Int J Food Sci Technol 2019;54:2182-2189.
37.    Komara N, Sastramihardja H, Afiati A. Hepatoprotective effect of Solanum melongena/eggplant against acute hepatitis. Althea Med J 2015;2:68-72.
38.    Audu A, Egwim EC, Adeyemi HY. Hypolipidemic properties of four varieties of eggplants (Solanum melongena L.). Int J Pharma Sci Invent 2014;3:47-54.
39.    Cohrs CM, Panzer JK, Drotar DM, Enos SJ, Kipke N, Chen C, et al. Dysfunction of persisting β cells is a key feature of early type 2 diabetes pathogenesis. Cell Rep 2020;31:107469-107482.
40.    Dehghani S, Mehri S, Hosseinzadeh H. The effects of Crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: a review. Iran J Basic Med Sci 2019;22:460-468.
41.    Wang W, Liu S, Qiu Z, He M, Wang L, Li Y, et al. Choroidal thickness in diabetes and diabetic retinopathy: a swept source OCT study. Investig Ophthalmol Vis Sci 2020;61:29-38.
42.    Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the american diabetes association. Diabetes Care 2017;40:136-154.
43.    Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 2018;71:884-895.
44.    Huang L, Xie Y, Dai S, Zheng H. Neutrophil-to-lymphocyte ratio in diabetic microangiopathy. Int J Clin Exp Pathol 2017;10:1223-1232.
45.    Xie X-r, Yan L-z, Bai X-s. Peripheral neuropathy and the risk of cardiovascular events in type 2 diabetes mellitus. Heart 2014;100:1837-1843.
46.    Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother 2017;92:726-731.
47.    Hosseini A, Hosseinzadeh H. A review on the effects of Allium sativum (Garlic) in metabolic syndrome. J Endocrinol Investig 2015;38:1147-1157.
48.    Onuora EEO, Okafor CN. Efficacy of extracts of African eggplant and Okra leaves on alloxan-induced diabetes mellitus adult male albino rats. Pak J Nutr 2016;15:551-555.
49.    Maritim AC, Sanders RA, Watkins J. Diabetes, oxidative stress, and anti-oxidants: a review. J Biochem Mol Toxicol 2003;17:24-38.
50.    Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, et al. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 2013;73:3097-3108.
51.    Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: anti-oxidative strategies. Front Med 2020;14:583-600.
52.    Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka T-a, Matsuhisa M, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005;37:1595-1608.
53.    Nugraheni ES, Tjahjono HA. Extracts giving of purple eggplant (Solanum melongena L.) orally can lower blood serum levels of malondialdehide of white rat (Rattus novergicus) wistar diabetes mellitus induced by aloxan. Int J Pediatr Endocrinol 2013;2013:O48.
54.    Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 2011;5:19-29.
55.    Brown A, Anderson D, Racicot K, Pilkenton SJ, Apostolidis E. Evaluation of phenolic phytochemical enriched commercial plant extracts on the in vitro inhibition of α-glucosidase. Front Nutr 2017;4:56-64.
56.    Ifie I, Ifie BE, Ibitoye DO, Marshall LJ, Williamson G. Seasonal variation in Hibiscus sabdariffa (Roselle) calyx phytochemical profile, soluble solids and α-glucosidase inhibition. Food Chem 2018;261:164-168.
57.    Ifie I, Abrankó L, Villa-Rodriguez JA, Papp N, Ho P, Williamson G, et al. The effect of ageing temperature on the physicochemical properties, phytochemical profile and α-glucosidase inhibition of Hibiscus sabdariffa (roselle) wine. Food Chem 2018;267:263-270.
58.    Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 2012;15:141-183.
59.    Nwanna EE, Ibukun EO, Oboh G. Inhibitory effects of methanolic extracts of two eggplant species from south-western Nigeria on starch hydrolysing enzymes linked to type-2 diabetes. Afr J Pharm Pharmaco 2013;7:1575-1584.
60.    Kwon Y-I, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technol 2008;99:2981-2988.
61.    Liu X, Luo J, Kong L. Phenylethyl cinnamides as potential α-Glucosidase inhibitors from the roots of Solanum Melongena. Nat Prod Commu 2011;6:851-853.
62.    Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, et al. Hypertension induced morphological and physiological changes in cells of the arterial wall. Am J Hypertens 2018;31:1067-1078.
63.    Mancia G, Grassi G. Blood pressure targets in type 2 diabetes. Evidence against or in favour of an aggressive approach. Diabetologia 2018;61:517-525.
64.    Shirani J, Loredo ML, Eckelman WC, Jagoda EM, Dilsizian V. Imaging the renin-angiotensin-aldosterone system in the heart. Curr Heart Fail Rep 2005;2:78-86.
65.    Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agr 2017;97:1679-1685.
66.    Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993;21:929-933.
67.    Yamaguchi S, Matsumoto K, Koyama M, Tian S, Watanabe M, Takahashi A, et al. Antihypertensive effects of orally administered eggplant (Solanum melongena) rich in acetylcholine on spontaneously hypertensive rats. Food Chem 2019;276:376-382.
68.    Philipp T, Distler A, Cordes U. Sympathetic nervous system and blood-pressure control in essential hypertension. Lancet 1978;312:959-963.
69.    Champlain J, Ameringen MR. Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats. Circ Res 1972;31:617-628.
70.    Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci 2006;7:335-346.
71.    Bipat R, Toelsie J, Joemmanbaks R, Gummels J, Klaverweide J, Jhanjan N, et al. Effects of plants popularly used against hypertension on norepinephrine-stimulated guinea pig atria. Pharmacogn Mag 2008;4:12-19.
72.    Mueller M, Beck V, Jungbauer A. PPARalpha activation by culinary herbs and spices. Planta Med 2011;77:497-504.
73.    Galavi A, Hosseinzadeh H, Razavi BM. The effects of Allium cepa L.(onion) and its active constituents on metabolic syndrome: a review. Iran J Basic Med Sci 2020;23:1-14.
74.    El-Dashlouty MS, El-Sherif FE-ZA, Shalaby MA, El-Din MF, El-Mosselhy SE-M. Round black, long white eggplant diets for clinical nutrition of fructose induced hypertensiona, hyperglycemia and hyperlipidemia. Alexandria J Agr Sci 2016;61:139-151.
75.    Kakuda C, Aoki L, Ferrari M, Lotierzo P, Caramelli B. Influence of an eggplant and orange juice on lipids and fibrinogen. Atherosclerosis 1997;1:325-325.
76.    Praça JM, Thomaz A, Caramelli B. Eggplant (Solanum melongena) extract does not alter serum lipid levels. Arq Bras Cardiol 2004;82:269-276.
77.    Silva GE, Takahashi MH, Eik Filho W, Albino CC, Tasim GE, Serri Lde A, et al. Absence of hypolipidemic effect of Solanum melongena L. (eggplant) on hyperlipidemic patients. Arq Bras Endocrinol Metabol 2004;48:368-373.
78.    Kritchevsky D, Tepper S, Story J. Influence of an eggplant (Solanum melongena) preparation on cholesterol metabolism in rats. Experimentelle Pathol 1975;10:180-183.
79.    Botelho FV, Enéas LR, Cesar GC, Bizzotto CS, Tavares É, Oliveira FcA, et al. Effects of eggplant (Solanum melongena) on the atherogenesis and oxidative stress in LDL receptor knock out mice (LDLR−/−). Food Chem Toxicol 2004;42:1259-1267.
80.    Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR. Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Human Nutrition 1997;51:321-330.
81.    Ressaissi A, Attia N, Falé L P, Pacheco R, Victor B, Machuqueiro M, et al. Isorhamnetin dervatives and piscidic acid for hypercholestrolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies. Arch Pharm Res 2017;40:1278-1286.
82.    Sudheesh S, Presannakumar G, Vijayakumar S, Vijayalakshmi NR. Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum Nutr 1997;51:321-330.
83.    Silva ME, Santos RC, O’Leary MC, Santos RS. Effect of aubergine (Solanum melongena) on serum and hepatic cholesterol and triglycerides in rats. Braz Arch Biol Technol 1999;42:339-342.
84.    Zaki AN. Hypolipidemic effect of eggplant peels (Solanum melongena, L) powder on obese rats. Nutr Food Sci 2018;1:1783-1798.
85.    Cherem ADR, Tramonte VLCG, Fett R, Dokkum W. The effect of the eggplant core on blood lipid concentrations in hypercholesterolemic guinea pigs (Cavia porcellus). Rev Bras Plantas Med 2007;9:51-60.
86.    Jorge P, Neyra LC, Osaki RM, de Almeida E, Bragagnolo N. Effect of eggplant on plasma lipid levels, lipidic peroxidation and reversion of endothelial dysfunction in experimental hypercholesterolemia. Arq Bras Cardiol 1998;70:87-91.
87.    Razavi BM, Abazari AR, Rameshrad M, Hosseinzadeh H. Carnosic acid prevented olanzapine-induced metabolic disorders through AMPK activation. Mol Biol Rep 2020;47:7583-7592.
88.    Malekzadeh S, Heidari MR, Razavi BM, Rameshrad M, Hosseinzadeh H. Effect of safranal, a constituent of saffron, on olanzapine (an atypical antipsychotic) induced metabolic disorders in rat. Iran J Basic Med Sci 2019;22:1476-1482.
89.    Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res 2016;118:1723-1735.
90.    Jiang SZ, Lu W, Zong XF, Ruan HY, Liu Y. Obesity and hypertension. Exp Ther Med 2016;12:2395-2399.
91.    Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res 2016;118:1752-1770.
92.    Xanthopoulos M, Tapia IE. Obesity and common respiratory diseases in children. Paediatr Respir Rev 2017;23:68-71.
93.    Malti N, Merzouk H, Merzouk SA, Loukidi B, Karaouzene N, Malti A, et al. Oxidative stress and maternal obesity: feto-placental unit interaction. Placenta 2014;35:411-416.
94.    Madhikarmi N, Murthy K, Rajagopal G, Singh P. Lipid peroxidation and anti-oxidant status in patients with type 2 diabetes in relation to obesity in Pokhara-Nepal. J Diabetol 2013;4:5-12.
95.    Molnár D, Decsi T, Koletzko B. Reduced anti-oxidant status in obese children with multimetabolic syndrome. Int J Obes 2004;28:1197-1202.
96.    You JS, Lee YJ, Kim KS, Kim SH, Chang KJ. Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Nutr Res 2014;34:258-267.
97.    Qian Y, Zhong P, Liang D, Xu Z, Skibba M, Zeng C, et al. A newly designed curcumin analog Y20 mitigates cardiac injury via anti-inflammatory and anti-oxidant actions in obese rats. PLoS One 2015;10:e0120215.
98.    Han L-K, Zheng Y-N, Xu B-J, Okuda H, Kimura Y. Saponins from Platycodi Radix ameliorate high fat diet–induced obesity in mice. J Nut 2002;132:2241-2245.
99.    Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high fat diet-induced obesity in the rat. J Pharmacol Sci 2005;97:124-131.
100. Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med 2015;81:771-783.
101. Zakiyaturrodliyah L, Brotosudarmo TH, editors. Saponin from purple eggplant (Solanum melongena L.) and their activity as pancreatic lipase inhibitor. Mater Sci Eng C 2019;509:012139.