Immunization against Pseudomonas aeruginosa using Alg-PLGA nano-vaccine

Document Type : Original Article

Authors

1 Parseh Institute of Iran, Tehran, Iran

2 Department of Cellular and Molecular Biology, Zanjan Branch, Payame Noor of Zanjan, Zanjan, Iran

Abstract

Objective(s): Pseudomonas aeruginosa is the bacterium that causes of pulmonary infection among chronically hospitalized patients. Alginate is a common surface antigen of P. aeruginosa with a constant structure that which makes it an appropriate target for vaccines. In this study, P. aeruginosa alginate was conjugated with to PLGA nanoparticles, and its immunogenicity was characterized as a vaccine.
Materials and Methods: Alginate was isolated from a mucoid strain of P. aeruginosa and conjugated with to PLGA with˝ N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride ˝= ˝EDAC˝ and N-Hydroxysuccinimide (NHS). Chemical characterization of prepared nano-vaccine was performed using FTIR Spectroscopy, Zetasizer, and Atomic Force Microscopy (AFM). The immunogenicity of this nano-vaccine was evaluated through intramuscular injection into BALB/c mice.  Four groups of mice were subjected to the injection of alginate–PLGA, and two weeks after the last administration step, opsonophagocytosis assay, IgG detection, challenge, and cytokine determination via ELISA were carried out.
Results: Alginate-PLGA conjugation was corroborated by FTIR, Zetasizer, and AFM. The ELISA consequence showed that alginate was prospering in the instigation of the humoral immunity.The immunogenicity enhanced against the alginate-PLGA. Remarkably diminished bacterial titer in the spleen of the immunized mice posterior to challenge with PAO1 strain in comparison with the  alginate alone and control groups.
Conclusion: The bacterial burden in the spleen significantly decreased after the challenge (p <0.05). The opsonic activity was significantly increased in the alginate- PLGA group (p <0.05). 

Keywords


    1.    Pedersen SS, Kharazmi A, Espersen F, Hoiby N. Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 1990; 58: 3363-3368.
    2.    Lam J, Chan R, Lam K, Costerton JW. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 1980; 28: 546-556.
    3.    Deretic V, Schurr MJ, Yu H. Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 1995; 3: 351-356.
    4.    Linker A, Jones RS. A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem 1966; 241: 3845-3851.
    5.    Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 2001; 183: 5395-5401.
    6.    Kong HS. Effect of over epressing rsm A from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strain of Pseudomonas syringae. Phytopathoiogy 2012; 102: 575-587.
    7.    Oliver AM, Weir DM. The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol 1985; 59: 190-196.
    8.    Meshulam T, Obedeanu N, Merzbach D, Sobel JD. Phagocytosis of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Clin Immunol Immunopathol 1984; 32: 151-165.
    9.    Learn DB, Brestel EP, Seetharama S. Hypochlorite scavenging by Pseudomonas aeruginosa alginate. Infect Immun 1987; 55: 1813-1818.
    10.    Cabral DA, Loh BA, Speert DP. Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Pediatr Res 1987; 22: 429-431.
    11.    Williams BJ, Dehnbostel J, Blackwell TS. Pseudomonas aeruginosa: host defence in lung disease. Respirology 2010; 15: 1037-1056.
    12.    Krieg DP, Helmke RJ, German VF, Mangos JA. Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophage in vitro. Infect Immun 1988; 56:3173-3179.
    13.    Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-574.
    14.    Pier GB, DesJardin D, Grout M, Garner C, Bennett SE, Pekoe G, et al. Human immune response to Pseudomonas aeruginosa mucoid exopolysaccharide (alginate) vaccine. Infect Immun 1994; 62:3972-3979.
    15.    Pier GB, Boyer D, Preston M, Coleman FT, Llosa N, Mueschenborn-Koglin S, et al. Human monoclonal antibodies to Pseudomonas aeruginosa alginate that protect against infection by both mucoid and nonmucoid strains. J Immunol 2004; 60:420-431.
    16.    Theilacker C, Coleman FT, Mueschenborn S, Llosa N, Grout M, Pier GB. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect Immun 2003; 71: 3875-3884.
    17.    Cryz SJ, Fürer E, Que JU. Synthesis and characterization of a Pseudomonas aeruginosa alginate-toxin A conjugate vaccine. Infect Immun 1991; 59:45-50.
    18.    Kashef N, Behzadian-Nejad Q, Najar-Peerayeh S, Mousavi-Hosseini K, Moazzeni M, Djavid GE. Synthesis and characterization of a Pseudomonas aeruginosa alginate-D-LPS conjugate vaccine. J Med Microbiol 2006; 55: 1441-1446.
    19.    Najafzadeh F, Shapouri R, Rahnema M, Azar SR, Kianmehr A. Pseudomonas aeruginosa PAO-1 lipopolysaccharide-diphtheria toxoid conjugate vaccine: preparation, characterization and immunogenicity. Jundishapur J Microbiol 2015; 8:1771-1791.
    20.    Morita T, Sakamura Y, Horikiri Y, Suzuki T, Yoshino H. Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly (ethylene glycol) as a protein micronization adjuvant. J Control Release 2000; 69:435-444.
    21.    Doring G and Pier G B. Vaccines and immunotherapy against P. aeruginosa vaccine. Vaccines 2008; 26: 1011-1024.
    22.    Hatano K, Boisot S, DesJardins D, Wright DC, Brisker J, Pier GB. Immunogenic and antigenic properties of a heptavalent high-molecular- weight O-polysaccharide vaccine derived from Pseudomonas aeruginosa. Infect Immun 1994; 62:3608-3616.
    23.    Knutson CA, Jeanes A. Determination of the composition of uronic acid mixtures. Anal Biochem 1968; 24:428-490.
    24.    Ames P, DesJardins D, Pier GB. Opsonophagocytic killing activity of rabbit antibody to Pseudomonas aeruginosa mucoid exopolysaccharide. Infect Immun 1985; 49:281-285.
    25.    Holder IA. Pseudomonas immunotherapy: A historical overview. Vaccine  2004; 11:57-75.
    26.    Phennicie RT, Sullivan MJ, Singer JT, Yoder JA, Kim CH. Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect Immun 2010; 78:4542-4550.
    27.    Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine 2014; 9:1420-1456.
    28.    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161: 505-522.
    29.    Horsfall AC, Butler DM, Marinova L, Warden PJ, Williams RO, Maini RN, et al. Suppression of collagen-induced arthritis by continuous administration of IL-4. J Immunol 1997; 17:35-71.
    30.    Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, Dong X, et al. TL1A–DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med 2008; 205:1049-1062.
    31.    Su B, Wang J, Wang X, Jin H, Zhao G, Ding Z, et al. The effects of IL-6 and TNF-α as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination. Vaccine 2008; 26:5111-5122.
    32.    Mata E, Igartua M, Patarroyo ME, Pedraz JL, Hernández RM. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur J Pharm Sci  2011; 44: 32-40.
    33.    Baltimore RS, and Mitchell M. Immunologic investigation of mucoid strains of Pseudomonas aeruginosa of : comparison of succeptibility to opsonic antibody in mucoid and nonmucoid strains. J Infect Dis 1980; 141: 238-247.
    34.    Cabral DA, Loh BA, and Speert DP. Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Pediatr Res 1987; 22: 429-431.
    35.    Heiby N, Andersen V, and Bendien G. Pseudomonas aeruginosa infection in cystic fibrosis. Humoral and cellular immune responses against Pseudomonas aeuginosa. Acta Pathol Microbiol Scand Scet 1983; 83:459-468.
    36.    Krieg DP, Helmke RJ, German RF, Mangos JA. Resistance of mucoid Pseudomonas aeruginosa  to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect Immun 1988; 56:3173-3179.
    37.    Oliver AM, and Welr DM. Inhibition of bacterial binding to mouse macrophages by Pseudomonas alginate .J Clin Lab Immunol  1983; 10:221-224.
    38.    Pier GB, Small GL, Warren HB. Protection against mucoid Pseudomonas aeruginosa in rodent models of endobronchial infections. Science  1990; 249:537-539.
    39.    Roychoudhury S, May TB, Gill JF, Singh SK, Feingold DS, Chakrabarty AM. Purification and characterization of guanosin diphospho-D-mannose dehydrogenase: A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J Biol Chem 1989; 264:9380-9385.
    40.    Woods DE, Bass JA, JohansonWG, Staus DS. Role of adherence in the pathogenesis of Pseudomonas aeruginosa lung infection in cystic fibrosis. Infect Immun 1980; 30:694-699.
    41.    Lind bery A A, Glycoprotein conjugate vaccines. Vaccines 1999; 17: 28-36.
    42.    Campodonico V L, et al. Efficacy of conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect Immun 2011; 79:3455-3464.
    43.    Holst J. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis vaccine. Vaccines 2009; 27: 3-12.
    44.    Doig P, Smith SNR, Todd T, Irvin RT. Characterization of the binding of Pseudomonas aeruginosa to human epithelial cells. Infect Immun 198; 55:1517-1522.
    45.    Speert DP. Host defenses in patients with cystic fibrosis: modulation by Pseudomonas aeruginosa Surv Synth Pathol Res 1985; 4: 14-33.
    46.    Thomas BM, Shinabarger D, Romilla M, Janichi K, Chu L, James DD, et al. Alginate synthesis by Pseudomonas aeruginosa a key pathogenic factorin chronic pulmonary infections of cystic fibrosis patients. Surv Synth Pathol Res 1991; 4: 191-206.
    47.    Ciofu O and Tolker-Nielsen T. Tolerance and resistance of Pesudomonas aeruginosa biofilms to antimicrobial agents- how P.aeruginosa  can escape antibiotics. Front Microbiol  2019; 10 :1-15 .
    48.    Tan Qi, Qing Ai, Qi XU, Fang Li, Jialin YU. Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pesudomonas aeruginosa. Mediators of Inflammation 2018; 2018: 1-15
    49.    Charles AMC, Daniela NP, Christophe P, Karina A.Serban G, Anderson G. Irina Petrache. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearanc. Clin Exp Immunol 2015; 14: 70-77.
    50.    Anne M,Oliver M, Weir DM. The effect of Pseudomonas aeruginosa  alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol  1985; 59: 190-196.
    51.    Alikhani Z, Salouti M, Ardestani MS. Synthesis and immunological evaluation of nanovaccine based on PLGA nanoparticles and alginate antigen against infections caused by Pseudomonas aeruginosa. Biomed Phys Eng Express 2018; 4:1-20.
    52.    Leonie EP, Subhra M, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 2013; 25:1-70.
    53.    Danielle AWM, Shanno L, Haughneg SMK, Miechael JWA, Narasimhan B. Room temperature stable PSPA-based nanovaccine induces protective immunity. Front Immunol  2018; 11: 16-113.
    54.    Aleksander MG, Tracy H. The role of airway macrophages in apoptotic cell clearance following acate and chronic lung inflammation. Semin Immuno Pathol  2016; 38:409-423.
    55.    Simhadri VR, Andersen JF, Calvo E, Choi Sc, Coligan JE, Borrego F. Human CD300a binds to phosphatidylethanol-amine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood  2012; 119:2799-2809.
    56.    Skwarczynski M and Toth I. Peptid-based subunit nanovaccines. Curr Drug Delive 2011; 8: 282-289.
    57.    Sekhon BS, Saluja V. Nanovaccine an overview. Int J Pharm Front Res 2011; 1:101-109.
    58.    Devitt A, Moffatto D, Raykandalia C, Capra JD, Simmons DL, Gregory CD. Human CD mediates recognition and phagocytosis of apoptotic cells. Nature  1998; 392:505-509.
    59.    Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biopgys 2010; 39:407-427.
    60.    Mazeheri F, Breus O, Durdu S, Haus D, Wittbrodt J, Gilmour D, et al. Distinc roles for BAI1 and TIM-4  in the engulfment of dying neurons by microbial. Nat Commun  2014; 5:40-46.
    61.    Safari Zanjani L, Shapouri R, Dezfulian M, Mahdavi M, Shafiee Ardestani M. Eotoxin A-PLGA nanoconjugate vaccine against Pseudomonas aeruginosa infection : protectivity in murin model. World J of Microbl and Biotechnol 2019; 35:1-9.
    62.    Safari Zanjani L, Shapouri R, Dezfulian M, Mahdavi M, Shafiee Ardestani M. Protective potential of conjugated Peudomonas aeruginosa LPS-PLGA nanoparticles in mice as a nano vaccine.  Iran J Immunol 2020; 17: 75-86.