Gas chromatography-mass spectrometry profiling and analgesic, anti-inflammatory, antipyretic, and antihyperglycemic potentials of Persea americana

Document Type : Original Article

Authors

Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt

Abstract

Objective(s): The present study determines the chemical constituents of Persea americana using gas chromatography-mass spectrometry (GC-MS) and its different activities.
Materials and Methods: Air-dried powdered leaves of Persea americana were extracted by 95% methanol and fractionated consecutively with petroleum ether, chloroform, and ethyl acetate. The saponifiable matter, EtOAc and aqueous fractions were subjected to GC-MS. The analgesic, anti-inflammatory, antipyretic, and antihyperglycemic properties of extracts, different fractions, and crude polysaccharide were determined by hot plate, carrageenan-induced paw edema, yeast-induced pyrexia, and alloxan-induced hyperglycemia methods, respectively.
Results: Fourteen fatty acid methyl esters were identified in GC-MS-based profiling of the saponifiable matter. Alongside, 13 compounds were determined from EtOAc fraction and 6 compounds from the aqueous fraction of P. americana leaves. The ethyl acetate fraction and total stem extract displayed high anti-inflammatory potential with percentage of paw edema reduction by 48.99 and 47.54 %, respectively, compared with that of indomethacin (42.90 %). The ethyl acetate fraction and total stem extract revealed the highest analgesic activity with 137.95 and 137.12 % percent of protection against external stimulus, respectively. Investigation of antipyretic efficiency showed the total stem extract and crude polysaccharides attained normal temperature after 3 hr, which was very close to that of acetylsalicylic acid. The total leaf and stem extracts displayed significant antihyperglycemic activity with significant reduction in the level of blood glucose by 76.67 and 59.05 %, respectively.
Conclusion: P. americana had analgesic, anti-inflammatory, antipyretic, and antihyperglycemic properties, which refer to its bioactive metabolites.

Keywords


1.    Chanderbali AS, Werff H, Renner SS. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Mo Bot Gard 2001; 88:104-134.
2.    Chen H, Morrell PL, Ashworth VETM, De La Cruz M, Clegg MT. Tracing the geographic origins of major avocado cultivars. J Hered 2008; 100:56–65.
3.    Abraham JD, Abraham J, Takrama JF. Morphological characteristics of avocado (Persea americana Mill.) in Ghana. Afr J Plant Sci 2018; 12:88-97.
4.    Mahmoud AH, Samy MN, Wanas AS, Kamel MS. Pharmacognostical investigation of leaf and stem of Persea americana. Int J Pharmacogn Phytochem Res 2016; 8:690-700.
5.     Lans CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2006; 2:45-55.
6.    Agra MF, Freitas PF, Barbosa-Filho JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Brazilian J Pharmacogn 2007; 17:114-140.
7.    Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 2005; 99:325-348.
8.    Andrade-Cetto A, Becerra-Jiménez J, Martínez-Zurita P, Ortega-Larrocea P, Heinrich M. Disease-consensus index as a tool of selecting potential hypoglycemic plants in Chikindzonot, Yucatán, México. J Ethnopharmacol 2006; 107:199-204.
9.    Di Stasi LC, Oliveira GP, Carvalhaes MA, Queiroz-Junior M, Tien OS, Kakinami SH, et al. Medicinal plants popularly used in the Brazilian tropical Atlantic forest. Fitoterapia 2002; 73:69-91.
10.    Brai BIC,  Adisa RA,   Odetola AA. Hepatoprotective properties of aqueous leaf extract of Persea americana, Mill (Lauraceae) ‘Avocado’ against CCl4-induced damage in rats. Afr J Tradit Complement Altern Med 2014; 11:237–244.
11.    Singh WS, Rajkhowa TK, Chanu KHV, Ali MA, Lalmuanthanga C, Mohan P, et al. Histopathological changes caused by accidental avocado leaves toxicity in rabbits. Int J Res Pharm Sci 2010; 1:517-520.
12.    Oelrichs PB, Ng JC, Seawright AA, Ward A, Schäffeler L, MacLeod JK. Isolation and identification of a compound from avocado (Persea americana) leaves that causes necrosis of the acinar epithelium of the lactating mammary gland and the myocardium. Nat Toxins 1995; 3:344–349.
13.    Adeboye JO, Fajonyomia MO, Makindeb JM, Taiwob OB. A preliminary study on the hypotensive activity of Persea americana leaf extracts in anaesthetized normotensive rats. Fitoterapia 1999; 70:15-20.
14.    Adeyemi OO, Okpo SO, Ogunti OO. Analgesic and anti-inflammatory effects of the aqueous extract of leaves of Persea americana Mill Lauraceae. Fitoterapia 2002; 73:375-380.
15.    Owolabi MA, Jaja SI, Coker HAB. Vasorelaxant action of aqueous extract of the leaves of Persea americana on isolated thoracic rat aorta. Fitoterapia 2005; 76:567-573.
16.    Owolabi MA, Coker HAB, Jaja SI. Bioactivity of the phytoconstituents of the leaves of Persea americana. J Med Plants Res 2010; 4:1130-1135.
17.    Gomaa AA-R, Samy MN, Desoukey SY, Kamel MS. Anti-inflammatory, analgesic, antipyretic and anti-diabetic activities of Abutilon hirtum (Lam.) Sweet. Clin Phytosci 2018 ;4:11-17.
18.    Mahmoud BK, Hamed ANE, Samy MN, Wanas AS, Kamel MS. Antimicrobial and GC/MS studies for saponifiable and volatile oil of Markhamia platycalyx leaves. Eur J Pharm Med Res 2015; 2:57-63.
19.    Abdel Wahab MF, Abdel Lattef A, Fouad MA, Desoukey SY, Kamel MS. Phytochemical and biological study of Petrea volubilis L. (Verbenaceae), Bull Pharm Sci, Assuit Univ 2001; 34:9-20.
20.    Abdel-Aleem ER, Attia EZ, Farag FF, Samy MN, Desoukey SY. Total phenolic and flavonoid contents and anti-oxidant, anti-inflammatory, analgesic, antipyretic and antidiabetic activities of Cordia myxa L. leaves. Clin Phytosci 2019; 5:29-37.
21.    Kang, JY, Khan MNA, Park NH, Cho JY, Lee MC, Fujii H,  et al. Anti-pyretic, analgesic anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thumbergii in mice. J Ethnopharmacol 2008; 116:187-190.
22.    Vinegar R, Schreiber W, Hugo R. Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther 1969; 166:96–103.
23.    Di Rosa M, Willoughby DA. Screens for anti-inflammatory drugs. J Pharm Pharmacol 1971; 23:297-298.
24.    Kim HP, Son KH, Chang HW, Kang SS. Flavonoids: potential anti-inflammatory agents. Nat Prod Sci 1996; 2:1–8.
25.    Muruganandan S, Raviprakash V. Anti-inflammatory activity of Syzgium cumini bark. Fitoteropia 2001; 72:369–375
26.    Micallef MA, Garg ML. Anti-inflammatory and cardioprotective effects of n-3 polyunsaturated fatty acids and plant sterols in hyperlipidemic individuals. Atherosclerosis 2009; 204:476-482.
27.    George KA, Eric W, David DO, George AK. Antinociceptive effects of Newboulia Laveis (P.Beauv) stem bark extract in rat model. Pharmacog Mag 2009; 17:49–54.
28.    Bachlav RS, Gulecha VS, Upasani CD. Analgesic and anti-inflammatory activity of Argyreia Speciosa roots. Indian J Pharmacol 2009; 41:158–161.
29.    Howard M. Fever: causes and consequences. Neurosci Biobehav Rev 1993; 17:237–269.
30.    Singh RK, Acharya SB, Bhattacharya SK. Pharmacological activity of Elaeocarpus sphaericus. Phytother Res 2000; 14:36–39.
31.    Martinez-Vazquez M, Ramirez Apan TO, Aguilar H, Bye R. Analgesic and antipyretic activities of an aqueous extract and of the flavone linarin of Buddleia cordata. Planta Med 1996; 62:137–140.
32.    Reanmongkol W, Itharat A, Bouking P. Evaluation of the anti-inflammatory, antinociceptive and antipyretic activities of the extracts from Smilax corbularia Kunth rhizomes in mice and rats (in vivo). Songklanakarin J Sci Technol 2007; 29:59–67.
33.    Bhattacharya S, Roy B. Preliminary investigation of antipyretic activity of Cuscuta reflexa in rats. J Adv Pharm Technol Res 2010; 1:PMC3255388
34.    Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50:537–546.
35.    Yadav S, Vats V, Dhunnoo Y, Grover JK. Hypoglycemic and antihyperglycemic activity of Murraya koenigii leaves in diabetic rats. J Ethnopharmacol 2002; 82:111–116.
36.    Kwon O, Eck P, Chen S, Corpe CP, Lee J, Kruhlak M, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 2007; 21:366-377.
37.    Brahmachari G. Bio-flavonoids with promising antidiabetic potentials: A critical survey. In: Tiwari VK, Mishra BB, editors. Opportunity, challenge, and scope of natural products in medicinal chemistry. Research Signpost: Kerala; 2011. p. 187-212.