In vitro identification of antimicrobial hemolytic lipopeptide from halotolerant Bacillus by Zymogram, FTIR, and GC mass analysis

Document Type : Original Article


Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran


Objective(s): The multi-drug resistant bacteria and clinical infections are some of the biggest global concerns, so new drugs are needed. Antimicrobial peptides and lipopeptides are new bioactive agents with great potential that can become a new strategy for clinical applications.
Materials and Methods: Some Bacillus strains were isolated based on hemolytic antimicrobial production from the soil. The extracellular proteins were extracted by acidic precipitation and chloroform/methanol method and analyzed by SDS-PAGE electrophoresis and stained with Sudan black. The black fragment was purified and characterized by FTIR, GC/MS, and HPLC analysis to demonstrate the presence of lipids and proteins. The anti-microbial ability and stability of the purified lipopeptide were assayed by the Kirby-Bauer method. Also, it was examined for metal removal.
Results: A new Bacillus halotolerans strain SCM 034 with hemolytic antimicrobial production was isolated. According to GC/MS (detecting C16, C17) and HPLC (detecting leucine, glutamic acid, valine, arginine, glycine, and aspartic acid) data, the black fragment was lipopeptide. Polyacrylamide hydrogel containing lipopeptide and gel purified lipopeptide showed anti-microbial activities against S. aureus and S. cerevisiae that were stable for a few months. Also, the lipopeptide was useful for cation removal and decreased cobalt, nickel, and calcium by 10.81 %, 24.39 %, and 34 %, respectively.
Conclusion: Production of antibacterial lipopeptide hemolysin from this strain is reported for the first time and according to the results, lipopeptides have unique properties with biomedical and pharmaceutical applications. Also, polyacrylamide hydrogel lipopeptide is a promising candidate for wound healing.


1. Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015; 2015:1-9.
2. Meena KR, Tandon T, Sharma A, Kanwar SS. Lipopeptide antibiotic production by Bacillus velezensis KLP2016. J Appl Pharm Sci 2018; 8:91-98.
3. Mirani ZA, Khan MN, Siddiqui A, Khan F, Aziz M, Naz S, et al. Ascorbic acid augments colony spreading by reducing biofilm formation of methicillin-resistant Staphylococcus aureus. Iran J Basic Med Sci 2018; 21:175-180.
4.    Padmavathi AR, Abinaya B, Pandian SK. Phenol, 2, 4-bis (1, 1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 2014; 30:1111-1122.
5. Kadkhoda H, Ghalavand Z, Nikmanesh B, Kodori M, Houri H, Maleki DT, et al. Characterization of biofilm formation and virulence factors of of Staphylococcus aureus isolates from paediatric patients in Tehran. Iran J Basic Med Sci 2020; 23:691-698.
6. Mishra B, Lushnikova T, Wang G. Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC adv 2015; 5: 59758-59769.
7. Moryl M, Spętana M, Dziubek K, Paraszkiewicz K, Różalska S, Płaza GA, et al. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol 2015; 62:725-732.
8. Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z. A novel lipopeptide produced by a Pacific Ocean deep‐sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 2008; 105:698-705.
9. Yakimov MM, Timmis KN, Wray V, Fredrickson HL. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 1995; 61:1706-1713.
10.    Shokouhfard M, Kermanshahi RK, Shahandashti RV, Feizabadi MM, Teimourian S. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens. Iran J Basic Med Sci 2015; 18:1001‐1007.
11.    Peypoux F, Bonmatin J, Wallach J. Recent trends in the biochemistry of surfactin. App microbiol biotechnol 1999; 51:553-563.
12.    Liu J-F, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z. Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 2015; 16:4814-4837.
13.    Rautela R, Singh AK, Shukla A, Cameotra SS. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie Van Leeuwenhoek. 2014; 105:809-821.
14.    Mondal MH, Sarkar A, Maiti TK, Saha B. Microbial assisted (Pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies. J Mol Liq 2017; 242:873-878.
15.    Alajlani M, Shiekh A, Hasnain S, Brantner A. Purification of bioactive lipopeptides produced by Bacillus subtilis strain BIA. Chromatographia 2016; 79:1527-1532.
16.    Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 2005; 22:717-741.
17.    Hino M, Fujie A, Iwamoto T, Hori Y, Hashimoto M, Tsurumi Y, et al. Chemical diversity in lipopeptide antifungal antibiotics. J Ind Microbiol Biotechnol 2001; 27:157-162.
18.    Babu P, Chandel AK, Singh OV. Extremophiles and their applications in medical processes: Springer; 2015.
19. Anwar UB, Zwar IP, Souza AO. Biomolecules produced by extremophiles microorganisms and recent discoveries. In: Rodrigues AG, Editor. New and future developments in microbial biotechnology and bioengineering: microbial biomolecules: Properties, relevance, and their translational applications. Elsevier 2020 p. 247-270.
20.    Çolak F, Atar N, Yazıcıoğlu D, Olgun A. Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem Eng J 2011 173:422-428.
21.    Etemadzadeh SS, Emtiazi G. Generation of non-toxic, chemical functional bio-polymer for desalination, metal removal and antibacterial activities from animal meat by-product. J Food Sci Technol  2020; 58: 159–165.
22.    Zhao H, Yan L, Xu X, Jiang C, Shi J, Zhang Y, et al. Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Express 2018; 8:1-16.
23.    Kruger NJ. The Bradford method for protein quantitation.  The protein protocols handbook: Springer 2009; 17-24.
24.    Enshaei M, Khanafari A, Akhavan SA. Metallothionein induction in two species of Pseudomonas exposed to cadmium and copper contamination. Iran J Environ Health Sci 2010; 7:287-298.
25.    Ahmed HA, Ebrahim W, Mikhailovna PA, Henrich B, Proksch P. Extraction and Identification of some metabolites produced by antagonistic apple plant bacteria Brevibacterium halotolerans. Int J Adv Res 2015; 3:1208-1217.
26.    Nath S, Paul P, Roy R, Bhattacharjee S, Deb B. Isolation and identification of metal-tolerant and antibiotic-resistant bacteria from soil samples of Cachar district of Assam, India. SN Appl Sci 2019; 1:1-9.
27. Jape A, Harsulkar A, Sapre V. Modified Sudan Black B staining method for rapid screening of oleaginous marine yeasts. Int J Curr Microbiol App Sci 2014; 3:41-46.
28.    Godolphin W, Stinson R. Isoelectrofocusing of human plasma lipoproteins in polyacrylamide gels: Diagnosis of type III hyperlipoproteinemia (“Broad beta” disease). Clin Chim Acta 1974; 56:97-103.
29.    Kurien BT, Scofield RH. Extraction of proteins from gels. a brief review. In: Springer, Editor. Protein Electrophoresis 2012. p. 403-405.
30.    Retamal CA, Thiebaut P, Alves EW. Protein purification from polyacrylamide gels by sonication extraction. Anal Biochem 1999; 268:15-20.
31.    Fanaei M, Emtiazi G. Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. J Mol Liq 2018; 268:707-714.
32.    Ushasree UV, Jaleeli KA, Ahmad A. Study on infrared spectroscopy of human blood. Int J Sci Environ Technol 2006; 5:1189-1192.
33.    Tareb R, Bernardeau M, Amiel C, Vernoux J. Usefulness of FTIR spectroscopy to distinguish rough and smooth variants of Lactobacillus farciminis CNCM-I-3699. FEMS Microbiol Lett 2017; 364:fnw298.
34.    Talari ACS, Martinez MAG, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 2017; 52:456-506.
35.    Trivedi M, Branton A, Trivedi D, Shettigar H, Bairwa K, Jana S. Fourier transform infrared and ultraviolet-visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin. Nat Prod Chem Res 2015; 3: 186-192.
36.    Sanches NB, Cassu SN, Dutra RdCL. TG/FT-IR characterization of additives typically employed in EPDM formulations. Polímeros 2015; 25:247-255.
37.    Chen Q, Pei Z, Xu Y, Li Z, Yang Y, Wei Y, et al. A durable monolithic polymer foam for efficient solar steam generation. Chem Sci 2018; 9:623-628.
38.    Simonova D, Karamancheva I. Application of fourier transform infrared spectroscopy for tumor diagnosis. Biotechnol Biotechnol Equip 2013; 27:4200-4207.
39.    Yuniarto K, Purwanto YA, Purwanto S, Welt BA, Purwadaria HK, Sunarti TC, editors. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. In AIP Conference Proceedings: AIP Publishing LLC: 2016; 020101.
40.    Cintrón MS, Hinchliffe DJ. FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 2015; 3:30-40.
41.    Bai Z, Dan W, Yu G, Wang Y, Chen Y, Huang Y, et al. Tough and tissue-adhesive polyacrylamide/collagen hydrogel with dopamine-grafted oxidized sodium alginate as crosslinker for cutaneous wound healing. RSC adv 2018; 8:42123-42132.
42.    Dimkić I, Stanković S, Nišavić M, Petković M, Ristivojević P, Fira D, et al. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front Microbiol 2017; 8:925.
43.    Sagredo-Beltrán J, De La Cruz-Rodríguez Y, Alvarado-Rodríguez M, Vega-Arreguín J, Rodríguez-Guerra R, Alvarado-Gutiérrez A, et al. Genome sequence of Bacillus halotolerans strain MS50-18A with antifungal activity against phytopathogens, isolated from saline soil in San Luís Potosí, Mexico. Genome Announc 2018; 6(10):e00135-118.
44.    Xia Y, Li S, Liu X, Zhang C, Xu J, Chen Y. Bacillus halotolerans strain LYSX1-induced systemic resistance against the root-knot nematode Meloidogyne javanica in tomato. Ann Microbiol 2019; 69:1227-1233.
45.    Ben-Gad D, Gerchman Y. Reclassification of Brevibacterium halotolerans DSM8802 as Bacillus halotolerans comb. nov. based on microbial and biochemical characterization and multiple gene sequence. Curr Microbiol 2017; 74:1-5.
46.    Slama HB, Cherif-Silini H, Chenari Bouket A, Qader M, Silini A, Yahiaoui B, et al. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front Microbiol 2019; 9:3236.
47.    Goldner W. Cancer-related hypercalcemia. J Oncol Pract 2016; 12:426-432.
48.    Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, et al. Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 2018; 13:e0198107.
49.    Sudarmono P, Wibisana A, Listriyani LW, Sungkar S. Characterization and synergistic antimicrobial evaluation of lipopeptides from Bacillus amyloliquefaciens isolated from oil-contaminated soil. Int J Microbiol 2019; 2019:1-8.
50.    Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des 2012; 80:434-439.
51.    Bernat P, Paraszkiewicz K, Siewiera P, Moryl M, Płaza G, Chojniak J. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria. World J Microbiol Biotechnol 2016; 32:1-13.
52.    Paduszynska MA, Maciejewska M, Neubauer D, Golacki K, Szymukowicz M, Bauer M, et al. Influence of short cationic lipopeptides with fatty acids of different chain lengths on bacterial biofilms formed on polystyrene and hydrogel surfaces. Pharmaceutics 2019; 11:506.