Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review

Document Type : Review Article


1 Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India

2 Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India

3 Department of Chemistry, De La Salle University, Manila, Metro Manila, Philippines


A perilous increase in the number of bacterial infections has led to developing throngs of antibiotics for increasing the quality and expectancy of life. Pseudomonas aeruginosa is becoming resistant to all known conventional antimicrobial agents thereby posing a deadly threat to the human population. Nowadays, targeting virulence traits of infectious agents is an alternative approach to antimicrobials that is gaining much popularity to fight antimicrobial resistance. Quorum sensing (QS) involves interspecies communication via a chemical signaling pathway. Under this mechanism, cells work in a concerted manner, communicate with each other with the help of signaling molecules called auto-inducers (AI). The virulence of these strains is driven by genes, whose expression is regulated by AI, which in turn acts as transcriptional activators. Moreover, the problem of antibiotic-resistance in case of infections caused by P. aeruginosa becomes more alarming among immune-compromised patients, where the infectious agents easily take over the cellular machinery of the host while hidden in the QS mediated biofilms. Inhibition of the QS circuit of P. aeruginosa by targeting various signaling pathways such as LasR, RhlR, Pqs, and QScR transcriptional proteins will help in blocking downstream signal transducers which could result in reducing the bacterial virulence. The anti-virulence agent does not pose an immediate selective pressure on growing bacterium and thus reduces the pathogenicity without harming the target species. Here, we review exclusively, the growing emergence of multi-drug resistant (MDR) P. aeruginosa and the critical literature survey of QS inhibitors with their potential application of blocking P. aeruginosa infections.


1. Web Review of Todar’s Online Textbook of Bacteriology. The Good, the Bad, and the deadly. Sci Mag 2004; 304:1421-1632.
2.    Kon K, Rai M. Antibiotic resistance mechanisms and new antimicrobial approaches. 1st ed. Academic Press: London, UK, 2016.
3.    Gomez MI, Prince A. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 2007; 7:244-251.
4.    Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, et al. Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 2005; 43:5085-5090.
5.    Obritsch MD, Douglas NF, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004; 48:4606-4610.
6.    Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645-1658.
7.    Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37:745-751.
8.    Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582-610.
9.    Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006; 14:413-420.
10.    Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other non-fermentative gram-negative bacteria. Clin Infect Dis 1998; 1:93-99.
11.    Maura D, Ballok AE, Rahme LG. Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 2016; 33:41-46.
12.    Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, et al. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J Med Chem 2016; 59:5929-5969.
13.    Clatworthy AE, Pierson E, Hung DT. Targeting virulence: A new paradigm for antimicrobial therapy. Nat Chem Biol 2007; 3:541-548.
14.    Allen RC, Popat R, Diggle SP, Brown SP. Targeting virulence: can we make evolution-proof drugs. Nat Rev Microbiol 2014; 12:300-308.
15.    Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010; 9:117-128.
16.    Yan S, Wu G. Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa. Front Microbiol 2019; 10:1582-1591.
17.    Whiteley M, Diggle SP, Greenberg EP. Bacterial quorum sensing: the progress and promise of an emerging research area. Nature 2017; 551:313-320.
18.    Kariminik A, Majid BS, Kheirkhah B. Pseudomonas aeruginosa quorum sensing modulates immune responses: an updated review article. Immunol Lett 2017; 190:1-6.
19.    Ghosh R, Das A, Mallik S. Inhibition of quorum sensing in Pseudomonas aeruginosa: a review. Indian J Pharm Sci 2019; 81:797-806.
20.    Venturi V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 2006; 30: 274-291.
21.    Zeng L. Pseudomonas aeruginosa pathogenicity and antibiotic resistance. Doctor of Philosophy, A Dissertation, The Graduate School, University of Florida, 2004.
22.    Antibiotic resistance threats in the United States, Centers for Disease Control and Prevention: Antibiotic Resistance Threats in the United States 2013, Atlanta, GA: Centers for Disease Control and Prevention.
23.    Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010; 10:441-451.
24.    Wang CY, Jerng JS, Chen KY, Lee LN, Yu CJ, Hsueh PR, et al. Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: clinical features, risk-factors and outcomes. Clin Microbiol Infect 2006; 12:63-68.
25.    Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 2013; 14:20983-21005.
26.    Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014; Article ID 541340:1-7.
27.    Bayani M, Siadati S, Rajabnia R, Taher AA. Drug resistance of Pseudomonas aeruginosa and enterobacter cloacae Isolated from ICU, Babol, Northern Iran. Int J Mol Cell Med 2013; 2:204-209.
28.    Dash M, Padhi S, Narasimham MV, Pattnaik S. Antimicrobial resistance pattern of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary care hospital, South Odisha, India. Saudi J Health Sci 2014; 3:15-19.
29.    Antimicrobial resistance and healthcare-associated infections, Annual Epidemiological Reports. European Centre for Disease Prevention and Control. Annual epidemiological report 2014. Antimicrobial resistance and healthcare-associated infections. Stockholm: ECDC; 2015.
30.    Kos VN, Deraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 2015; 59:427-436.
31.    Ali Z, Mumtaz N, Naz SA, Jabeen N, Shafique M. Multi-drug resistant pseudomonas aeruginosa: a threat of nosocomial infections in tertiary care hospitals. J Pak Med Assoc 2015; 65:12-16.
32.    Chakraborty P, Mukherjee S. A Study on the prevalence and microbiological profile of nosocomial infections in the ICU of a tertiary care hospital in Eastern India. World Academy of Science, Engineering and Technology. Int J Curr Microbiol Appl Sci 2016; 5:920-925.
33.    Khan MA, Faiz A. Antimicrobial resistance patterns of Pseudomonas aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med 2016; 36:23-28.
34.    Restrepo MI, Babu BL, Reyes LF, Chalmers JD, Soni NJ, Sibila O, et al. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalized patients. Eur Respir J 2018; 52:1701190-1701204.
35.    Lila G, Mulliqi G, Raka L, Kurti A, Bajrami R, Azizi E. Molecular epidemiology of Pseudomonas aeruginosa in university clinical center of Kosovo. Infect Drug Resist 2018; 11:2039-2046.
36.    Barsic B, Tambic A, Santini M, Klinar I, Kutlesa M, Krajinovic V. Antibiotic resistance among nosocomial isolates in a Croatian intensive care unit--results of a twelve-year focal surveillance of nosocomial infections. J Chemother 2004;16:273-281.
37.    Benie CKD, Nathalie G, Adjehi D, Solange A, Ferniquekonan K, Desire K, et al. Prevalence and antibiotic resistance of Pseudomonas aeruginosa isolated from bovine meat, fresh fish and smoked fish. Arch Clin Microbiol 2017; 8:40-49.
38.    Pragasam AK, Veeraraghavan B, Nalini E, Anandan S, Kaye KS. An update on antimicrobial resistance and the role of newer antimicrobial agents for Pseudomonas aeruginosa. Indian J Med Microbiol 2018; 36:303-316.
39.    Gandra S, Mojica N, Klein EY, Ashok A, Nerurkar V, Kumari M, et al. Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, 2008-2014. Int J Infect Dis 2016; 50:75-82.
40.    Gupta R, Malik A, Rizvi M, Ahmed M. Presence of metallo-beta-lactamases (MBL), extended-spectrum beta-lactamase (ESBL) & AmpC positive non-fermenting gram-negative bacilli among intensive care unit patients with special reference to molecular detection of blaCTX-M&blaAmpC genes. Indian J Med Res 2016; 144:271275-271289.
41.    Ellappan K, Belgode Narasimha H, Kumar S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J Glob Antimicrob Resist 2018; 12:37-43.
42.    Dhaneria M, Jain S, Singh P, Mathur A, Lundborg CS, Pathak A. Incidence and determinants of health care-associated blood stream infection at a neonatal intensive care unit in Ujjain, India: A prospective cohort study. Dis 2018; 6:271-275.
43.    Wattal C, Raveendran R, Goel N, Oberoi JK, Rao BK. Ecology of blood stream infection and antibiotic resistance in intensive care unit at a tertiary care hospital in North India. Braz J Infect Dis 2014; 18:245-251.
44.    Lila G, Mulliqi-Osmani G, Bajrami R, Kurti A, Azizi E, Raka L. The prevalence and resistance patterns of Pseudomonas aeruginosa in a tertiary care hospital in Kosovo. Infez Med 2017; 25:21-26.
45.    Sala A, Di Ianni F, Pelizzone I, Bertocchi M, Santospirito D, Rogato F, et al. The prevalence of Pseudomonas aeruginosa and multidrug resistant Pseudomonas aeruginosa in healthy captive ophidian. Peer J 2019; 7:6706-6719.
46.    Barrios CC, Ciancotti-Oliver L, Bautista-Rentero D, Adan-Tomas C, Zanón-Viguer V. A new treatment choice against multi-drug resistant Pseudomonas aeruginosa: doripenem. J Bacteriol Parasitol 2014; 5:21-27.
47.    BusiRizzi E, Schinina V, Bordi E, Buontempo G, Narciso P, Bibbolino C. HIV-related bronchopulmonary infection by Pseudomonas aeruginosa in the Haarat era: radiological findings. Acta Radiol 2006; 47:793-797.
48.    Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 2013; 11:297-308.
49.    Tredget EE, Shankowsky HA, Rennie R, Burrell RE, Logsetty S. Pseudomonas infections in the thermally injured patient. Burns 2004; 30:3-26.
50.    Al-Wrafy F, Brzozowska E, Gorska S, Gamian A. pathogenic factors of Pseudomonas aeruginosa – the role of biofilm in pathogenicity and as a target for phage therapy. PostepyHig Med Dosw 2016; 70:78-91.
51.    Wagner VE, Filiatrault MJ, Picardo KF, Iglewski BH. Pseudomonas aeruginosa Virulence and Pathogenesis Issues. In Cornelis P, editor. Pseudomonas Genomics and Molecular Biology. 1st ed. Caister Academic Press, Norfolk, UK; 2008. pp. 129-158.
52.    Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000; 2:1051-1060.
53.    Wiener-Kronish JP, Frank D, Sawa T. Mechanisms of lung epithelial cell injury by Pseudomonas aeruginosa. In: Wong HR, Shanley TP, editors. Molecular and Cellular Biology of Critical Care Medicine Volume 1 Molecular Biology of Acute Lung Injury. Boston: Kluwer Academic Publishers; 2001. pp. 149-161.
54.    Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit: A critical review. Genes Dis 2019; 6:109-119.
55.    Kollef MH, Chastre J, Fagon JY, François B, Niederman MS, Rello J, et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med 2014; 42:2178-2187.
56.    Crouch BS, Wunderink RG, Jones CB, Leeper Jr KV. Ventilator associated pneumonia due to Pseudomonas aeruginosa. Chest 1986; 109:1019-1029.
57.    Raineri E, Porcella L, Acquarolo A, Crema L, Albertario F, Candiani A. Ventilator-associated pneumonia caused by Pseudomonas aeruginosa in intensive care unit: epidemiology and risk factors. J Med Microbiol Diagn 2014; 3:185-193.
58.    Rello J, Ausina V, Puzo C, Quintana E, Net A, Prats G. Risk factors for infection by Pseudomonas aeruginosa in patients with ventilator-associated pneumonia. Intensive Care Med 1994; 20:193-198.
59.    Streeter K, Katouli M. Pseudomonas aeruginosa: a review of their pathogenesis and prevalence in clinical settings and the environment. Infect Epidemiol Med 2016; 2:25-32.
60.    Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Paediatr 2001; 138:699-704.

61.    Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelial fail to kill bacteria of abnormal airway surface fluid. Cell 1996; 85:229-236.
62.    Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev 1999; 79:23-45.
63.    Terheggen-Lagro SW, Rijkers GT, Van der Ent CK. The role of airway epithelium and blood neutrophils in the inflammatory response in cystic fibrosis. J Cyst Fibros 2005; 4:15-23.
64.    Worlitzch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109:317-325.
65.    Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Clin Infect Dis 2008; 47:1526-1533.
66.    Bhatia S, Singh S. Inhibition of siderophores in blocking fungal infections. In Fungal Siderophores-From Mineral-Microbe Interactions to Anti-pathogenicity Springer Nature, Switzerland AG. 2021; 13-31.
67.    Bhardwaj S, Singh S, Bhatia S. Contrasting role of fungal siderophore in metal ion complex formation. In Fungal Siderophores - From Mineral-Microbe Interactions to Anti-pathogenicity by Springer Nature, Switzerland AG. 2021; 99-117.
68.    Cornelis P, Matthijs S (2007) Pseudomonas Siderophores and their Biological Significance. In: Varma A., Chincholkar S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg.
69.    Peek ME, Bhatnagar A, McCarty NA, Zughaier SM. Pyoverdine, the major siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition. Interdiscip Perspect Infect Dis 2012;1-10.
70.    Therrien C, Levesque RC. Molecular basis of antibiotic resistance and b-lactamase inhibition by mechanism-based inactivators: perspectives and future direction. FEMS Microbiol Rev 2000; 24:251-262.
71.    Vidaur L, Sirgo G, Rodriguez AH, Rello J. Clinical approach to the patient with suspected ventilator-associated pneumonia. Respir Care 2005; 50:965-974.
72.    Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA b-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother 2000; 50:11-18.
73.    Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2009; 2:101-111.
74.    Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC. A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 1982; 146:719-723.
75.    Bass PF, Jarvis JA, Mitchell CK. Urinary tract infections. Prim Care 2003; 30:41-61.
76.    Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 2006; 74:3134-147.
77.    Lysczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000; 2:1051-1060.
78.    Ressner RA, Murray CK, Griffith ME, Rasnake MS, Hospenthal DR, Wolf SE. Outcomes of bacteremia in burn patients involved in combat operations overseas. J Am Coll Surg 2008; 206:439-444.
79.    Estahbanati HK, Kashani PP, Ghanaatpisheh F. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics. Burns 2002; 28:637-641.
80.    Jombo GT, Akpan S, Epoke J, DenenAkaa P, Odey F. Multi-drug resistant Pseudomonas aeruginosa infections complicating surgical wounds and the potential challenges in managing post-operative wound infections:,University of Calabar teaching hospital experience. Asian J Trop Med 2010; 3:479-482.
81.    Hoiby N, Johnsen HK, Moser C, Song Z, Ciofu O, Kharazmi A. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 2001; 3:23-35.
82.    Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003; 50:61-68.
83.    Kuchma SL, Connoly JP, O’Toole GA. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 2005; 187:1441-1454.
84.    Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 2007; 10:644-648.
85.    Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aerguinosa biofilm matrix. J Bacteriol 2004; 186:4457-4465.
86.    Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. Identification of psl: a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 2004; 186:4466-4475.
87.    Nagachandrikaa T, Kumarb U, Dumpatic S, Charyc S, Mandatharac PS, Rathi VM. Prevalence of contact lens related complications in a tertiary eye centre in India. Cont Lens Anterior Eye 2011; 34:266-268.
88.    Ramphal R, McNiece MT, Polack FM. Adherence of Pseudomonas aeruginosa to the injured cornea: a step in the pathogenesis of corneal infections. Ann Opthalmol 1981; 13:421-425.
89.    Stern GA, Lubniewski A, Allen C. The interaction between Pseudomonas aeruginosa and the corneal epithelium. Arch Ophthalmol 1985; 103:1221-1225.
90.    Roberston DM, Petroll WM, Jester JV, Cavanagh HD. Current concepts: contact lens related Pseudomonas keratitis. Cont Lens Anterior Eye 2007; 30:94-107.
91.    Yeung KK, Forister JFY, Forister EF, Chung MY, Han S, Weissman BA. Compliance with soft contact lens replacement schedules and associated contact lens-related ocular complications: the UCLA contact lens study. Optometry 2010; 81:598-607.
92.    Wang MC, Liu CY, Shiao AS, Wang T. Ear problems in swimmers. J Chin Med Assoc 2005; 68:347-352.
93.    Nussinovitch M, Rimon A, Volovitz B, Raveh E, Prais D, Amir J. Cottontip applicators as a leading cause of otitis externa. Int J Pediatr Otorhinolaryngol 2004; 73:1168-1172.
94.    Ninkovic G, Dullo V, Saunders NC. Microbiology of otitis externa in the secondary care in United Kingdom and antimicrobial sensitivity. Auris Nasus Larynx 2008; 35:480-484.
95.    Crnich CJ, Safdar N, Maki DG. The role of the intensive care unit environment in the pathogenesis and prevention of ventilator-associated pneumonia. Respir Care 2005; 50:813-836.
96.    Ferrara AM. Potentially multidrug-resistant non-fermentative Gram-negative pathogens causing nosocomial pneumonia. Int J Antimicrob Agents 2006; 27:183-195.
97.    Shaw MJ. Ventilator-associated pneumonia. Curr Opin Pulm Med 2005; 11:236-241.
98.    Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165:867-903.  
99.    Ratjen F. Diagnosing and managing infection in CF. Paediatr Respir Rev 2006; 7:151–153.
100. Nicotra MB, Rivera M, Dale AM, Shepherd R, Carter R. Clinical pathophysiologic and microbiologic characterization of bronchiectasis in an aging cohort. Chest 1995; 108: 955-961.
101. Porras-Gomez M. Vega-Baudrit J, Nunez-Corrales S. Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. J Biomater Nanobiotechnol 2012; 3:519-527.
102. Gellatly SL, Hancock RE. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog Dis 2013;67:159-173.
103. Todar, K. Opportunistic infections caused by Pseudomonas aeruginosa. In: Kenneth Todar’s Online Textbook of Bacteriology. University of Wisconsin-Madison, Department of Bacteriology, 2009.
104. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2015; 112:7563-7568.
105. Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa  pulmonary infection. Infect Immun 1998; 66:43-51.
106. Strateva T, Mitov I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol 2011; 61:717-732.
107. Galoway DR. Pseudomonas aeruginosa elastase and elasolysis revisited: recent developments. Mol Microbiol 1991; 5:2315-2321.
108. Mariencheck WI, Alcorn JF, Palmer SM, Wright JR. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol 2003; 28:528-537.
109. Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ, van Strijp JA, et al. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 2012; 188:386-393.
110. Hoegy F, Mislin GL, Schalk IJ. Pyoverdine and pyochelin measurements. Methods Mol Biol 2014; 1149:293-301.
111. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8:623-633.
112. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95-108.
113. Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa  biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003; 47:317-323.
114. Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007; 13:560-578.
115. Van Delden C. Virulence factors in Pseudomonas aeruginosa. In: Ramos J-L, editor. Pseudomonas. Vol. 2. New York: Kluwer Academic/Plenum Publishers; 2004, pp.3-45.
116. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177-192.
117. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016; 4:481-511.
118. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 2007; 51:4062-4070.
119. Chang Q, Wu C, Lin C, Li P, Zhang K, Xu L, et al. The structure of ampG gene in Pseudomonas aeruginosa and its effect on drug resistance. Can J Infect Dis Med Microbiol 2018; 2018:1-8
120. Sandoval-Motta S, Aldana M. Adaptive resistance to antibiotics in bacteria: a systems biology perspective. Wiley Interdiscip Rev Syst Biol Med 2016; 8:253-267.
121. Taylor PK, Yeung AT, Hancock RE. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 2014; 191:121-130.
122. Ozkan S, Kaynak F, Kalkanci A, Abbasoglu U, Kustimur S. Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents. Mem Inst Oswaldo Cruz 2005; 100:319-323.
123. Das T, Sehar S, Manefield M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 2013; 5:778-786.
124. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002; 8:881-890.
125. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135-138.
126. Balaban NQ, Gerdes K, Lewis K, McKinney JD. A problem of persistence: still more questions than answers. Nat Rev Microbiol 2013; 11:587-591.
127. Lambert P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 2002; 95:22-26.
128. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41:276-301.
129. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare. Clin Infect Dis 2002; 34:634-640.
130. Fleming D, Rumbaugh KP. Approaches to dispersing medical biofilms. Microorganisms. 2017; 5:15-31.
131. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8:623-633.
132. Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol 2009; 19:341-345.
133. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-347.
134. Attinger C, Wolcott R. Clinically addressing biofilm in chronic wounds. Adv Wound Care 2012; 1:127-132.
135. Romling U, Balsalbre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 2012; 271:541-561.
136. Rogers SA, Huigens RW, Cavanagh J, Melander C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 2010; 54:2112-2118.
137. Lewis K. Persister Cells: Molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol 2012; 211:121-133.
138. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev 2004; 17:255-267.
139. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 2017; 17:383-392.
140. Chang W, Li Y, Zhang L, Cheng A, Lou H. Retigeric acid B attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PLoS one 2012; 7:1-10.
141. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 2011; 9:109-118.
142. West SA, Winzer K, Gardner A, Diggle SP. Quorum sensing and the confusion about diffusion. Trends Microbiol 2012; 20:586-594.
143. Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol 2014; 14:648-656.
144. Darch SE, West SA, Winzer K, Diggle SP. Density-dependent fitness benefits in quorum sensing bacterial populations. Proc Natl Acad Sci USA 2012; 109:8259-8263.
145. De Sordi L, Muhlschlegel FA. Quorum sensing and fungal bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 2009; 9:990-999.
146. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2:a012427.
147. Kaplan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 1985; 163:1210-1214.
148. Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: An autoinduction regulatory hierarchy. J Bacteriol 1995; 177:654-659.
149. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6:26-41.
150. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 1999; 67:5854-5862.
151. Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonguay MH, et al. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 2006; 62:1689-1699.  
152. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 2013; 9:339-343.
153. Christensen LD, Moser C, Jensen PO, Rasmussen TB, Christophersen L, Kjelleberg S, et al. Impact of Pseudomonas aeruginosa  quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiol 2007; 153:2312-2320.
154. Hurley MN, Camara M, Smyth AR. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J 2012; 40:1014-1023.
155. Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003; 6:56-60.
156. Soheili V, Tajani AS, Ghodsi R, Bazzaz BSF. Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Eur J Med Chem 2019; 172:26-35.
157. Jiang Q, Chen J, Yang C,In Y, Yao K. Quorum sensing: a prospective herapeutic target for bacterial diseases. Biomed Res Int 2019:1-16.
158. Remy B, Mion S, Plener L, Elias M, Chabriere E, Daude D. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 2018; 9:1-17.
159. Singh S, Wanjari PJ, Bhatia S, Sonwane VC, Chakraborti AK, Bharatam PV. Design, synthesis, biological evaluation and toxicity studies of N, N-disubstituted biguanides as quorum sensing inhibitors. Med Chem Res 2015; 24:1974-1987.
160. Singh S, Bhatia S, Prasad SB. In silico identification of polyphenolic compounds from the grape fruit as quorum sensing inhibitors. J Chem Pharm Res 2016; 8:411-419.
161. Bhatia S, Singh S, Sivaiah K. In silico docking, ADME and toxicity studies of aryl glyoxamide derivatives as anti-virulence agents. Trends in Pharmaceuticals and Nanotechnology 2019; 1:1-12.
162. Sachdeva S, Bhatia S, Mittal A, Sinha M. Synthesis, evaluation and in silico studies of 1, 8-naphthyridine derivatives against antimicrobial activity. J App Pharm Sci 2015; 5:53-59.
163. Guan LL, Onuki H, Kamino K. Bacterial growth stimulation with exogenous siderophore and synthetic n-acyl homoserine lactone autoinducers under iron-limited and low-nutrient conditions. Appl Environ Microbiol 2000; 66:2797-2803.
164. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005; 21:319-346.
165. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa  las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756-5767.
166. Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, Hogan DA. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa . Mol Microbiol 2007; 65:896-906.
167. Soheili V, Bazzaz BS, Abdollahpour N, Hadizadeh F. Investigation of Pseudomonas aeruginosa  quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology. Microb Pathog 2015; 89:73-78.
168. De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 2001; 67:1865-1873.
169. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa  biofilm bacteria by a halogenated furanone compound. Microbiol 2002; 148:87-102.
170. Hodgkinson JT, Galloway WR, Wright M, Mati IK, Nicholson RL, Welch M, et al. Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa. Org Biomol Chem 2012; 10:6032-6044.
171. Kutty SK, Barraud N, Ho KK, Iskander GM, Griffith R, Rice SA, et al. Hybrids of acylated homoserine lactone and nitric oxide donors as inhibitors of quorum sensing and virulence factors in Pseudomonas aeruginosa. Org Biomol Chem 2015; 13:9850-9861.
172. Hansen MR, Jakobsen TH, Bang CG, Cohrt AE, Hansen CL, Clausen JW, et al. Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa. Bioorg Med Chem 2015; 23:1638-1650.
173. Michael A, Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 2016; 40:774-794.
174. Smith KM, Bu Y, Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 2003; 10:81-89.
175. Champion et al (2016). IGE CH3 Peptide Vaccine, United States Patent, US 9.249,233 B2.
176. Gerdt JP, McInnis CE, Schell TL, Rossi FM, Blackwell HE. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by non-lactone ligands. Chem Biol 2014; 21:1361-1369.
177. Eibergen NR, Moore JD, Mattmann ME, Blackwell HE. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa.Chembiochem. 2015;16:2348-2356.
178. Moore JD, Gerdt JP, Eibergen NR, Blackwell HE. Active Efflux Influences the Potency of Quorum Sensing Inhibitors in Pseudomonas aeruginosa. ChemBioChem 2014; 15: 435-442.
179. Muh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP. Novel Pseudomonas aeruginosa  quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 2006; 50:3674-3679.
180. Ma L, Liu X, Liang H, Che Y, Chen C, Dai H. Effects of 14-alpha-lipoyl andrographolide on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56:6088-6094.
181. Smith KM, Bu Y, Suga H. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa  autoinducer. Chem Biol 2003; 10:563-571.
182. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa  virulence and biofilm formation. Proc Natl Acad Sci USA 2013; 110:17981-17986.
183. Park S, Kim HS, Ok K, Kim Y, Park HD, Byun Y. Design, synthesis and biological evaluation of 4-(alkyloxy)-6-methyl-2H-pyran-2-one derivatives as quorum sensing inhibitors. Bioorg Med Chem Lett 2015; 25:2913-2917.
184. Singh S, Bhatia S. In silico identification of albendazole as a quorum sensing inhibitor and its in vitro verification using CviR and LasBreceptors based assay systems. Bioimpacts 2018; 8:201-209.
185. Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 2014; 10:1-17.
186. Lidor O, Al-Quntar A, Pesci EC, Steinberg D. Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa  LasI quorum-sensing signal synthase. Sci Rep 2015; 5:16569.
187. Borges A, Simoes M, Todorovic TR, Filipovic NR, Garcia-Sosa AT. Cobalt complex with thiazole-based ligand as new Pseudomonas aeruginosa quorum quencher, biofilm inhibitor and virulence attenuator. Mol 2018; 23:1385-1400.
188. Chourasiya SS,  Kathuria D,  Singh S,  Sonawane VC,   Chakraborti AK, Bharatam PV. Design, synthesis and biological evaluation of novel unsymmetrical azines as quorum sensing inhibitors. RSC Adv 2015; 5:80027-80038.
189. Snow Setzer M, Sharifi-Rad J, Setzer WN. The search for herbal antibiotics: an in silico investigation of antibacterial phytochemicals. J Antibiot 2016; 5:1-113.
190. Kim H, Lee S, Byun Y, Park H. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 2015; 5:1-11.
191. Wu B, Capilato J, Pham MP, Walker J, Spur B, Rodriguez A, et al. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition. FASEB J 2016; 30:2400-2410.
192. Borlee BR, Geske GD, Blackwell HE, Handelsman J. Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa  by high-throughput screening. Appl Environ Microbiol 2010; 76:8255-8258.
193. Pattnaik SS, Ranganathan SK, Ampasala DR, Syed A, Ameen F, Busi S. Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa  PAO1 by Diaporthephaseolorum SSP12. Microb Pathog 2018; 118:177-189.
194. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015; 2015:1-18.
195. El-Shaer S, Shaaban M, Barwa R, Hassan R. Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl b-naphthylamide. J Med Microbiol 2016; 65:1194-1204.
196. Nizalapur S, Kimyon O, Biswas NN, Gardner CR, Griffith R, Rice SA, et al. Design, synthesis and evaluation of N-aryl-glyoxamide derivatives as structurally novel bacterial quorum sensing. Org Biomol Chem 2016; 14:680-693.
197. Ishida T, Ikeda T, Takiguchi N, Kuroda A, Ohtake H, Kato J. Inhibition of quorum sensing in Pseudomonas aeruginosa  by N-acyl cyclopentylamides. Appl Environ Microbiol 2007; 73:3183-3188.
198. Muh U, Hare BJ, Duerkop BA, Schuster M, Hanzelka BL, Heim R, et al. A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. PNAS 2006; 103:16948-16952.
199. Nizalapur S, Ho KKK, KimyonÃn, Yee E, Berry T, Manefield M, et al. Synthesis and biological evaluation of N-naphthoyl-phenylglyoxamide-based small molecular antimicrobial peptide mimics as novel antimicrobial agents and biofilm inhibitors. Org Biomol Chem 2016; 14:3623-3637.
200. Issa R, Meikle ST, James SL, Cooper IR. Use of poly (ε-Lysine) dendrons: A strategy targeting bacterial quorum sensing and biofilm formation. J Conf Sci 2014; 1-8.
201. Kasper SH, Bonocora RP, Wade JT, Musah RA, Cady NC.  Chemical inhibition of kynureninase reduces Pseudomonas aeruginosa quorum sensing and virulence factor expression. ACS Chem Biol 2016; 11:1106-1117.
202. El-Mowafy SA, Shaaban MI, Abd El Galil KH. Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J Appl Microbiol 2014; 117: 1388-1399.
203. Hentzer M, Eberl L, Nielsen J, Givskov M. Quorum sensing: a novel target for the treatment of biofilm infections. Bio Drugs 2003; 17:241-250.
204. Jakobsen TH, Tolker-Nielsen T, Givskov M. Bacterial biofilm control by perturbation of bacterial signaling processes. Int J Mol Sci 2017; 18:1970-1997.
205. Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem 2017; 292:4064-4076.
206. Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa  clearance in a mouse peritoneal implant infection model. PLoS One 2017; 12:176883-176915.
207. Morkunas B, Gal B, Galloway WRJD, Hodgkinson JT, Ibbeson BM, Tan YS, et al. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells. Beilstein J Org Chem 2016; 12:1428-1433.
208. Tan SYY, Chua SL, Chen Y, Rice SA, Kjelleberg S, Nielsen TE, et al. Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrob Agents Chemother 2013; 57:5629-5641.
209. Soukarieh F, Oton EV, Dubern JF, Gomes J, Halliday N, Crespo MDP, et al. In silico and in vitro-guided identification of inhibitors of alkylquinolone-dependent quorum sensing in Pseudomonas aeruginosa. Molecules 2018; 23:257-262.
210. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 2011; 35:247-274.
211. Jha S K, Rashmi S, Shubhra, Singh HR. High throughput screening of quorum sensing inhibitors based lead molecules for Pseudomonas aeruginosa associated infections. Int J Pharm Clin Res 2014; 6:214-220.
212. Fong J, Zhang C, Yang R, Boo ZZ, Tan SK, Nielsen TE, et al. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa. Sci Rep 2018; 8:1155-1166.
213. Park S, Kim HS, Ok K, Kim Y, Park HD, Byun Y. Design, synthesis and biological evaluation of 4-(alkyloxy)-6-methyl-2H-pyran-2-one derivatives as quorum sensing inhibitors. Bioorg Med Chem Lett 2015; 25:2913-2917.
214. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, et al. screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 2005; 187:1799-1814.
215. Sangshetti JN, Khan FAK, Patil RH, Marathe SD, Gade WN, Shinde DB. Biofilm inhibition of linezolid-like Schiff bases: Synthesis, biological activity, molecular docking and in silico ADME prediction. Bioorg Med Chem Lett 2015; 25:874-880.
216. Aybey A, Demirkan E. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa  by human serum paraoxonase. J Med Microbiol 2015; 65:105-113.
217. Jakobsen TH, Van-Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 2012; 56:2314-2325.
218. Kim B, Park JS, Choi HY, Yoon SS, Kim WG. Terrein is an inhibitor of quorum sensing and c-di-GMP in Pseudomonas aeruginosa : A connection between quorum sensing and c-di-GMP. Sci Rep 2018; 8:8617-8630.
219. Goh WK, Gardner CR, Chandra Sekhar KV, Biswas NN, Nizalapur S, Rice SA, et al. Synthesis, quorum sensing inhibition and docking studies of 1,5-dihydropyrrol-2-ones. Bioorg Med Chem 2015; 23:7366-7377.
220. Kim SK, Park HY, Lee JH. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl Environ Microbiol 2015; 81:2328-2338.