Therapeutic potential of mesenchymal stem cells for peripheral artery disease in a rat model of hindlimb ischemia

Document Type : Original Article


1 Department of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt

2 Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt

3 Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt

4 Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt

5 Department of Medical Anatomy, Faculty of Medicine, Fayoum University, Fayoum, Egypt


Objective(s): Mesenchymal stem cells are viewed as the first choice in regenerative medicine. This study aimed to elucidate the influence of BM-MSCs transplantation on angiogenesis in a rat model of unilateral peripheral vascular disease.
Materials and Methods: Twenty-one rats were arbitrarily allocated into three groups (7/group). Group I: control sham-operated rats, Group II: control ischemic group: Rats were subjected to unilateral surgical ligation of the femoral artery, and Group III: ischemia group:  Rats were induced as in group II, 24 hr after ligation, they were intramuscularly injected with BM-MSCs. After scarification, gastrocnemius muscle gene expression of stromal cell-derived factor-1 (SDF-1), CXC chemokine receptor 4 (CXCR4), vascular endothelial growth factor receptor 2 (VEGFR2), von Willebrand factor (vWF), and hypoxia-inducible factor-1α (HIF-1α) were analyzed by quantitative real-time PCR. Muscle regeneration and angiogenesis evaluation was assessed through H&E staining of the tissue. Furthermore, Pax3 and Pax7 nuclear expression was immunohistochemically assessed.
Results: Rats treated with BM-MSCs showed significantly raised gene expression levels of SDF-1, CXCR4, VEGFR2, and vWF compared with control and ischemia groups. H&E staining of the gastrocnemius showed prominent new vessel formation. Granulation tissue within muscles of the ischemic treated group by BM-MSCs showed cells demonstrating nuclear expression of Pax3 and Pax7.
Conclusion: BM-MSCs transplantation has an ameliorating effect on muscle ischemia through promoting angiogenesis, detected by normal muscle architecture restoration and new blood vessel formations observed by H&E, confirmed by increased gene expression levels of SDF-1, CXCR4, VEGFR2, and vWF, decreased HIF-1α gene expression, and increased myogenic Pax7 gene expression.


1. Shu J, Gaetano S. Update on peripheral artery disease: epidemiology and evidence-based facts. Atherosclerosis 2018; 275: 379-381.
2. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 2013; 382:1329-1340.
3. Wennberg PW. Approach to the patient with peripheral arterial disease. Circulation 2013; 128: 2241-2250.
4. Ouma GO, Jonas RA, Usman MH, Mohler ER. Targets and delivery methods for therapeutic angiogenesis in peripheral artery disease. Vasc Med 2012; 17:174-192.
5. Troidl K, Schaper W. Arteriogenesis versus angiogenesis in peripheral artery disease. Diabetes Metal Res Rev 2012; 28: 27–29.
6. Golpanian S, Ariel Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered hear tissue. Physiol Rev 2016; 96:1127-1168.
7.Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 2014; 143:181-196.
8.Watt SM, Gullo F, Van der Garde F, Markeson D, Camicia R, Khoo CP, et al. The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 2013; 108:25–53.
9.Kwon HM, Hur SM, Park KY, Kim CK, Kim YM, Kim HS,  et al., Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vasc Pharmacol 2014; 63:19–28.
10. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2012; 2:1-22.
11. Zhou M, Liu Z, Liu C,  Jiang X, Wei Z, Qiao W, et al. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds. J Biomed Mater Res B Appl Biomater 2012; 100: 111–120.
12. Pasquet M, Golzio M, Mery E,  Rafii A. Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. Int J Cancer  2010; 126: 2090–2101.
13. Thakker R, Yang P. Mesenchymal stem cell therapy for cardiac repair. Curr Treat Options Cardiovasc Med 2014; 16: 323.
14. Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting protein-protein interactions in the HIF system. Chem Med  2016; 11:773-786.
15. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes cancer 2011; 2:1117–1133.
16. Srikanth L, Sunitha MM, Venkatesh K,  Kumar PS, Chandrasekhar C, Vengamma B, et al. Anaerobic glycolysis and HIF1α expression in haematopoietic stem cells explains its quiescence nature. J Stem Cells 2015; 10:97–106.
17. Buckingham M, Bajard L, Daubas P, Esner M, Lagha M, Relaix F, et al. Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential. Anat Embryol 2006; 1:51-56.
18. Tebebi PA, Kim SJ, Williams RA, Milo B, Frenkel V, Burks SR, et al. Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Sci Rep 2017; 7:41550-41561.
19. Aref Z, de Vries MR, Quax PHA. Variations in surgical procedures for inducing hind limb ischemia in mice and the impact of these variations on neovascularization assessment. Int J Mol Sci 2019; 20:3704-3718.
20. Liu J, Zhang H, Zhang Y, Li N, Wen Y, Cao F, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol cells 2014; 37:865-872.
21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta deltaC (T)) method. Methods 2001; 25:402-408.
22. Sims NR, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta 2010; 1802:80–91.
23. Yong KW, Choi JR, Mohammadi M, Mitha AP, Sanati-Nezhad A, Sen A. Mesenchymal stem cell therapy for ischemic tissues. Stem Cells Int 2018; 1-11.
24. Yan T, Venkat P, Chopp M, Zacharek A, Ning R, Roberts C, et al. Neurorestorative responses to delayed human mesenchymal stromal cells treatment of stroke in type 2 diabetic rats. Stroke 2016; 47: 2850–2858.
25. Phelps J, Sanati-Nezhad A, Ungrin M, Duncan N, Sen A. Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018; 2018:1-23.
26. Kiani AA, Babaei F, Sedighi M, Soleimani A, Ahmadi K, Shahrokhi S, et al. CXCR4 expression is associated with time–course permanent and temporary myocardial infarction in rats. Iran J Basic Med Sci 2017; 20: 648–654.
27. Shiba Y, Takahashi M, Hata T, Murayama H, Morimoto H, Ise H, et al. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Cardiovasc Res 2009; 81:169–177.
28. Shiota Y, Nagai A, Sheikh AM, Mitaki S, Mishima S, Yano S, et al. Transplantation of a bone marrow mesenchymal stem cell line increases neuronal progenitor cell migration in a cerebral ischemia animal model. Sci Rep 2018; 8:14951-14963.
29. Wang L, Guo S, Zhang N, Tao Y, Zhang H, Qi T, et al. The role of SDF-1/CXCR4 in the vasculogenesis and remodeling of cerebral arteriovenous malformation. Ther Clin Risk Manag 2015; 11:1337-1344.
30. Doring Y, Pawig L, Weber C, Noels H. The cxcl12/cxcr4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 2014; 5:212-235.
31. Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X, et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 2011; 91:402-411.
32. Sun T, Sun B, Ni C, Zhao X, Wang X, Qie S, et al. Pilot study on the interaction between B16 melanoma cell-line and bone-marrow derived mesenchymal stem cells. Cancer Lett 2008; 263:35–43.
33. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal 2016; 10:347-354.
34. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 2011; 4:1-8.
35. Suidan GL, Brill A, De Meyer SF, Voorhees JR, Cifuni SM, Cabral JE, et al. Endothelial von willebrand factor promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol 2013; 33:2112–2120.
36. Randi AM, Laffan MA. Von willebrand factor and angiogenesis: basic and applied issues. J Thromb Haemost 2017; 15:13–20.
37.Van Breevoort D, Van Agtmaal EL, Dragt BS, Gebbinck JK, Dienava-Verdoold I, Kragt A, et al. Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific weibel-palade bodies. J Proteome Res 2012; 11:2925-2936.
38. Xiong Y, Huo Y, Chen C, Zeng H, Lu X, Wei C, et al. Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J Biol Chem 2009; 284: 23217–23224.
39. Imoukhuede PI, Dokun AO, Annex BH, Popel AS. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 2013; 304:1085-1093.
40. Ramamoorthy P, Shi H. Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons. Acta Neuropathol Commun 2014; 2:51-61.
41. Palomaki S, Pietlla M, Laitinen S, Pesala J, Sormunen R, Lehenkari P, et al. HIF-1α is upregulated in human mesenchymal stem cells. Stem Cells 2013; 31:1902–1909.
42. Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Bio Med Res Int 2015; 2015:1-13.
43. Cheng M, Qin G. Progenitor cell mobilization and recruitment: SDF-1, CXCR4, α4-integrin, and c-kit. Prog Mol Biol Transl Sci 2012; 111:243-264.
44. Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J physiol Cell physiol 2015; 309:775–782.
45. Messner F, Thurner M, Müller J. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther 2021; 12:146-161.
46. Buckinghama M, Relaixb F. PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 2015; 44:115-125.
47. Gang EJ, Bosnakovski D, Simsek T, To K, Perlingeiro RCR. Mesenchymal stem cells toward the myogenic lineage. Exp Cell Res 2008; 314:1721-1733.
48. Charytonowicz E, Matushansky I, Castillo-Martin M, Hricik T, Cordon-Cardo C, Ziman M. Alternate PAX3 and PAX7 C-terminal isoforms in myogenic differentiation and sarcomagenesis. Clin Transl Oncol 2011; 13:194-203.
49. Sassoli C, Nosi D, Tani A, Chellini F, Mazzanti B, Quercioli F, et al. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells. Exp Cell Res 2014; 323:297-313.
50. Maeda Y, Yonemochi Y, Nakajyo Y, Hidaka H, Ando Y. CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Sci Rep 2017; 7:3305-3316.
51. Mice Addicks GC, Brun CE, Sincennes MC, Saber J, Porter CJ, Stewart AF, et al . MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nat Commun  2019; 10:4256-4570.
52. Abbas H, Olivere LA, Padgett ME, Schmidt CA, Gilmore B, Southerland K, et al. Muscle progenitor cells are required for the regenerative response and prevention of adipogenesis after limb ischemia. bioRxiv  2020; 1-46.