Ameliorative effects of crocin on the inflammation and oxidative stress-induced kidney damages by experimental periodontitis in rat

Document Type : Original Article


1 Inonu University, Faculty of Medicine, Medical Biochemistry Department, Malatya, Turkey

2 Inonu University, Faculty of Medicine, Histology and Embryology Department, Malatya, Turkey

3 Karabuk University, Faculty of Medicine, Medical Biochemistry Department, Karabuk, Turkey

4 Karabuk University, Faculty of Dentistry, Periodontology Department, Karabuk, Turkey

5 Inonu University, Faculty of Medicine, Biostatistics Department, Malatya, Turkey


Objective(s): The present study aimed to investigate the effects of periodontitis on kidneys and the protective role of crocin in periodontitis-induced kidney damage.
Materials and Methods: Ethics committee approval was obtained and 30 Wistar rats were randomly divided into 3 groups of 10 rats: Control (C), Periodontitis (P), and Periodontitis + Crocin (P + Cr). After the treatments, rat kidney tissues were incised under anesthesia and blood samples were collected. Biochemical and histopathological analyses were conducted on the samples.
Results: Malondialdehyde (MDA), total oxidant status (TOS), and oxidative stress index (OSI) increased in P group rat kidney tissues; urea, creatinine, Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β) levels increased in the serum; glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) levels were reduced in rat kidney tissues, and renal histopathology deteriorated. In the P + Cr group, we observed improvements in biochemical and histopathological parameters when compared with the P group.
Conclusion: Periodontitis (P) led to deterioration in oxidative stress parameters and histopathology by increasing the oxidants in kidney tissue. P also led to inflammation in the blood of the rats. Periodontitis + Crocin (P + Cr) administration alleviated the effects of P due to powerful antioxidant anti-inflammatory properties. Cr could be employed as a protective agent in P-induced inflammation and oxidative damage.


1. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999; 4:1-6.
2. Walchuck RE. Periodontitis: Symptoms, treatment and prevention (Public Health in the 21st Century) by rosemarie E 2010.
3. Shaddox LM, Walker CB. Treating chronic periodontitis: Current status, challenges, and future directions. Clin Cosmet Investig Dent 2010; 2:79-91.
4. Research, Science and Therapy Committee Guidelines of the American Academy of Periodontology. Treatment of plaqueinduced gingivitis, chronic periodontitis, and other clinical conditions. J Periodontol  2001;72:1790-1800.
5.Van der Weijden GA, Timmerman MF. A systematic review on the clinical efficacy of subgingival debridement in the treatment of chronic periodontitis. J Clin Periodontol 2020; 29:55-71.
6. Bidault P, Chandad F, Grenier D. Systemic antibiotic therapy in the treatment of periodontitis. J Can Dent Assoc 2007; 73:515-520.
7. Herrera D, Alonso B,   León R,  Roldán S,  Sanz M. Antimicrobial therapy  in  periodontitis:  The  use  of  systemic   antimicrobials   against   the   subgingival   biofilm. J Clin Periodontol 2008; 35:45-66.  
8. Plessas A. Nonsurgical periodontal treatment:   Review of  the  evidence.  Oral  Health  Dent  Manag 2014; 13:71-80.
9. Levey AS,  de Jong PE,  Coresh J,  El Nahas M,  Astor BC,  Matsushita K, et al.  The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int 2011; 80:17-28.
10. Chambrone L, Foz AM,  Guglielmetti MR,  Pannuti CM,  Artese HPC,  Feres M, et al. Periodontitis and chronic kidney disease: a systematic review of the association of diseases and the effect of periodontal treatment on estimated glomerular filtration rate. J Clin Periodontol 2013; 40:443-456.
11. Paraskevas S,  Huizinga JD,  Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol 2008; 35:277-290.
12. Tonelli M,  Sacks F, Pfeffer M,  Jhangri GS,  Curhan G. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int 2005; 68:237-245.
13. Kshirsagar AV, Offenbacher S, Moss KL, Barros SP, Beck JD. Antibodies to periodontal organisms are associated with decreased kidney function, The Dental Atherosclerosis Risk in Communities study. Blood Purif 2007; 25:125-132.
14. Brotto RS,  Vendramini RC,  Brunetti IL,  Marcantonio RA,  Ramos AP, Pepato MT. Lack of correlation between periodontitis and renal dysfunction in systemically healthy patients. Eur J Dent 2011; 5: 8-18.
15. Grubbs V,  Plantinga LC,  Crews DC,  Bibbins-Domingo K, Saran R,  Heung M, et al. Vulnerable populations and the association between periodontal and chronic kidney disease. Clin J Am Soc Nephrol 2011; 6:711-717.
16. Eleftheriadis T,  Antoniadi G,   Liakopoulos V,  Kartsios C,  Stefanidis I. Disturbances of acquired immunity in hemodialysis patients. Semin Dial 2007; 20:440-451.    
17. Hung KC, Wu CC, Chen HS, Ma WY, Tseng CY, Yang LK, et al. Serum IL-6, albumin and co-morbidities are closely correlated with symptoms of depression in patients on maintenance haemodialysis. Nephrol Dial Transplant 2011; 26:658-664.    
18. Munoz MJ, Isakova T, Cai X, Bayes LY, Faul C, Scialla JJ, et al. Townsend, inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney Int 2017; 91:711-719.
19. Mousavi SH, Tayarani N, Parsaee H. Protective effect ofsaffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 2010; 30: 185–191.
20. Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin:  A comprehensive review.  Food Chem Toxicol 2014; 64:65-80
21. Rios J, Recio M, Giner R, Manez S. An update review of saffron and its active constituents. Phytother Res 1996; 10: 189–193.
22. Erdemli  ME, Gul M, Altinoz E, Aksungur Z, Gul S, Gozukara Bag H. Can crocin play a preventive role in Wistar rats with carbon tetrachloride-induced nephrotoxicity? Iran J Basic Med Sci 2018; 21:382-387.
23. Erdemli ME, Gul M, Altinoz E, Zayman E, Aksungur Z, Gozukara Bag H. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats. Biomed Pharmacother 2017; 96: 930–935.
24. Abdullaev FI, Espinosa-Aguirre JJ. Biomedical properties of   saffron   and   its   potential   use   in   cancer   therapy   and   chemoprevention trials. Cancer Det Prev 2004; 28:426-432.
25. Hosseinzadeh H, Karimi G,  Niapoor M. Antidepressant effects of Crocus sativus stigma extracts and its  constituents, crocin and safranal, in mice. J Med Plants 2004; 3: 48-58.  
26. Hassani FV, Naseri V, Razavi B, Mehri S, Abnous K,   Hosseinzadeh H. Antidepressant  effects  of  crocin  and  its  effects  on  transcript  and  protein  levels  of  CREB,  BDNF,  and  VGF in rat hippocampus. DARU 2014; 22:16-22.   
27. Moshiri M, Vahabzadeh M, Hosseinzadeh H. Clinical   applications of saffron (Crocus sativus) and its constituents: a review. Drug Res 2015; 65:287-295.
28. Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods 2013; 394:49–54.
29. Arabacı T,   Kermen E, Özkanlar S, Köse O, Kara A, Kızıldağ A, et al. Therapeutic effects of melatonin on alveolar bone resorption after experimental periodontitis in rats: a biochemical and immunohistochemical study. J Periodontol 2015; 86:874–881.
30. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95:351–358.
31. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82:70–77.
32. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34:497–500.
33. Aebi H, Bergmeyer HU. Methods of enzymatic analysis. Verlag Chemie/Academic Press Inc., Weinheim/New York, pp 1974; 673–680.
34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–275.
35. Erel O. A new automated colorimetric method for measuring totaloxidant status. Clin Biochem 2005;38:1103–1111.
36. Erel O. A novel automated direct measurement method for total anti-oxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37: 277–285.
37. Kassebaum NJ.  Bernabé E,  Dahiya M,  Bhandari B,  Murray CJL,   Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res 2014; 93:1045–1053.
38. Tonetti MS,  Jepsen S,  Jin L,  Otomo‐Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol 2017; 44:456–462.
39. D’Aiuto F, Ready D, Tonetti MS. Periodontal disease and C-reactive protein-associated cardiovascular risk. J Periodontal Res 2004; 39: 236–241.
40. Chapple ILC, Matthews JB. The role of reactive oxygen and anti-oxidant species in periodontal tissue destruction. Periodontol 2000 2007; 43:160–232.
41. Coresh J,  Byrd-Holt D,  Astor BC,  Briggs JB,  Eggers PW,  Lacher DA, et al.  Chronic kidney disease awareness, prevalence, and trends among US adults, 1999 to 2000. J Am Soc Nephrol 2005;16:180–188.
42. Gulle K, Akpolat M, Kurcer Z, Cengiz MI, Baba F,  Acikgoz S. Multi-organ injuries caused by lipopolysaccharide-induced periodontal inflammation in rats: Role of melatonin. J Periodont Res 2014; 49:736–41.
43. França LFC, Vasconcelos ACCG, da Silva FRP, Alves HPE, Carvalho JS, Lenardo DD, et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation. J Clin Periodontol 2017; 44:568–576.
44. Chen P, Xuan DY, Zhang JC. Periodontitis aggravates kidney damage in obese mice by MMP2 regulation. Bratisl Med J 2017; 118:740–745.
45. Barcelos RCS,  Rosa HZ,  Roversi K,  Tibúrcio-Machado CdS,  Inchaki PT,  Burger ME, et al. Apical periodontitis induces changes on oxidative stress parameters and increases Na+/K+-ATPase activity in adult rats. Arch Oral Biol 2020;118:104849.
46. Azuma MM, Gomes-Filhoa JE, Prieto AKC, Samuel RO,  Felix de Lima VM,  Sumida DH, et al.  Cintra, Diabetes increases interleukin-17 levels in periapical, hepatic, and renal tissues in rats. Arch Oral Biol 2017; 83:230–235.
47. Tomofuji T, Ekuni D, Irıe K, Azuma T, Tamaki N,  Maruyana T, et al. Relationships between peridontal inflammation, lipid peroxide and oxidative damage multiple organs in rats. Biomed Res 2011; 32:343-349.
48. Abou-Hany HO, Atef H, Said E, Elkashef HA, Salem HA. Crocin mediated amelioration of oxidative burden and inflammatory cascade suppresses diabetic nephropathy progression in diabetic rats. Chem Biol Interact 2018; 284:90–100.
49. Abou-Hany HO, Atef H, Said E, Elkashef HA, Salem HA. Crocin reverses unilateral renal ischemia reperfusion injury-induced augmentation of oxidative stress and toll like receptor-4 activity. Environ Toxicol Pharmacol 2018; 59: 182–189.
50. Kapucu A. Crocin ameliorates oxidative stress and suppresses renal damage in streptozotocin induced diabetic male rats. Biotech Histochem 2021;96:153-16051. Rezaee-Khorasany A, Razavi BM, Taghiabadi E,  Tabatabaei YA, Hosseinzadeh H. Effect of crocin, an active saffron constituent, on ethanol toxicity in the rat: Histopathological and biochemical studies. Iran J Basic Med Sci 2020;23 51-62.