Evaluation of the designed multi-epitope protein of Brucella melitensis in guinea pigs

Document Type : Original Article

Authors

1 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Veterinary Institution, Tehran, Iran

4 Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Objective(s): One of the causes of human and animal zoonotic infections is Brucella melitensis, which is transmitted to humans through dairy products. It seems for prevention of human infection we might protect the livestock by an efficient protein as a vaccine candidate. For this purpose, the use of immunogenic proteins of bacteria is able to create immunity the same as the traditional vaccines.
Materials and Methods: In this study, by finding the immunogenic antigens of this bacterium by 2-dimensional gel electrophoresis and MALDI-TOF methods and also the proteins reported in other studies, we found the epitopes of the bacterial antigenic determinants in silico. Nineteen peptides of T and B epitopes were selected. They were ligated with linkers and after gene synthesis, the designed polypeptide was expressed in  Escherichia coli BL21. The purified recombinant MEL protein mixed with chitin was injected subcutaneously into three 300 g male guinea pigs three times. Also, PBS control and Rev.1 commercial vaccine groups were considered.
Results: The results show that MEL polypeptide is equal to the Rev.1 vaccine in stimulating secretion of IFNγ and IL2 and specific IgG. High levels of IL-2 emphasize the activation of the cellular immunity, and in particular comparison of PI in guinea pig’s spleen cells treated with recombinant MEL protein on days 0 and 5 show that it has significant proliferation compared with PBS unstimulated cells.
Conclusion: This recombinant protein could be a subunit protein with sufficient efficiency in stimulating the humoral and cellular-mediated immune system against B. melitansis.

Keywords


1. Chang C, Beutler BD, Ulanja MB, Uche C, Zdrnja M. Brucellosis presenting with febrile pancytopenia: an atypical presentation of a common disease and review of Brucellosis. Case Rep Infect Dis 2021; 2021:2067570.
2. Wubishet Z, Sadik K, Abdala B, Mokonin B, Getachew T, Getachew K. Small ruminant brucellosis and awareness of pastoralists community about zoonotic importance of the disease in Yabello districts of Borena Zone Oromia Regional State, Southern Ethiopia. Curr Trends Biomed Eng Biosci 2018; 12:5-10.
3. Pappas G. The changing Brucella ecology: Novel reservoirs, new threats. Int J Antimicrob Agents 2010; 36: S8- S11.
4. Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: A re-emerging zoonosis. Vet Microbiol 2010; 140: 392-398.
5. Sauret JM, Vilissova N. Human brucellosis. J Am Board Fam Pract 2002;15:401-406.
6. Golshani M, Buozari S. A review of brucellosis in Iran: Epidemiology, risk factors, diagnosis, control, and prevention. Iran Biomed J 2017;21:349-359.
7. Foster JT, Walker MF, Rannals DB, Hussain HM, Drees PK, Tiller VR, et al. African lineage Brucella melitensis isolates from Omani livestock. Front Microbiol 2017; 8:2702.
8. Samadi A, Ababneh M, Giadinis ND, Lafi SQ. Ovine and caprine brucellosis (Brucella melitensis) in aborted animals in Jordanian sheep and goat flocks. Vet Med Int 2010; 2010: 458695.
9. Yumuk Z, O’Callaghan D. Brucellosis in Turkey-an overview. Inter J Infect Dis 2012;16: e228-e235.
10. Akbarmehr J. The prevalence of Brucella abortus and Brucella melitensis in local cheese produced in Sarab city, Iran and its public health implication. Afr J Microbiol Res 2011; 5:1500-1503.
11. Ponsart C, Riou M, Locatelli Y, Jacques I, Fadeau A, Jay M, et al. Brucella melitensis Rev. 1 vaccination generates a higher shedding risk of the vaccine strain in Alpine ibex (Capra ibex) compared to the domestic goat (Capra hircus). Vet Res 2019; 50:1-3.
12.Alton GG, Elberg SS. Rev. 01 Brucella melitensis vaccine. A review of ten years of study. Vet Bull 1967; 371: 893-900.
13. Ollé-Goig JE, Canela-Soler J. An outbreak of Brucella melitensis infection by airborne transmission among laboratory workers. Am J Public Health 1987; 77:335-338.
14.Sekhavati MH, Heravi RM, Tahmoorespur M, Yousefi S, Abbassi-Daloii T, Akbari R. Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen. Iran J Basic Med Sci 2015; 18:499-505.
15. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 2015; 53:405-414.
16. Simon GG, Hu Y, Khan AM, Zhou J, Salmon J, Chikhlikar PR, et al. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice. PLoS One 2010; 5: e8574.  
17. Michel-Todó L, Reche PA, Bigey P, Pinazo MJ, Gascón J, Alonso-Padilla J. In silico design of an epitope-based vaccine ensemble for Chagas disease. Front Immunol 2020; 10:3124-3156.
18. Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Evaluation of immunogenicity of novel multi-epitope subunit vaccines in combination with poly I: C against Brucella melitensis and Brucella abortus infection. Inter Immunopharmacol 2019;75:105829.
19. Vitry MA, De Trez C, Goriely S, Dumoutier L, Akira S, Ryffel B, et al. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 2012;80:4271-4280.
20. Avila-Calderón ED, Lopez-Merino A, Sriranganathan N, Boyle SM, Contreras-Rodríguez A. A history of the development of Brucella vaccines. BioMed Res Int 2013;2013:743509-743527.
21. Svetić A, Jian YC, Lu P, Finkeiman FD, Gause WC. Brucella abortus induces a novel cytokine gene expression pattern characterized by elevated IL-10 and IFN-γ in CD4+ T cells. Inter Immunol 1993;5:877-883.
22. Gómez MC, Nieto JA, Rosa C, Geijo P, Escribano MA, Munoz A, et al. Evaluation of seven tests for diagnosis of human brucellosis in an area where the disease is endemic. Clin Vaccine Immunol 2008;15:1031-1033.
23. Wahl KL, Wunschel SC, Jarman KH, Valentine NB, Petersen CE, Kingsley MT, et al.  Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2002;74:6191-6199.
24. Valentine N, Wunschel S, Wunschel D, Petersen C, Wahl K. Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 2005;71:58-64.
25. Dadfarma N, Nowroozi J, Kazemi B, Bandehpour M. Identification of the effects of acid-resistant Lactobacillus casei metallopeptidase gene under colon-specific promoter on the colorectal and breast cancer cell lines. Iran J Basic Med Sci 2021; 24: 506-513.  
26. No HK, Meyers SP. Preparation and characterization of chitin and chitosan-a review. J Aquat Food Prod Technol 1995;4:27-52.
27. Birck MM, Tveden-Nyborg P, Lindblad MM, Lykkesfeldt J. Non-terminal blood sampling techniques in guinea pigs. J Vis Exp 2014;11:e51982.
28. Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 2010;1:87-93.
29. Khodabakhsh T, Arabi A, Pakzad P, Gheflat S, Bahreinipour A, Bandehpour M. A New ELISA Kit based on antigenic epitopes for diagnosing of Brucella abortus. Microbiol Biotechnol Lett 2019; 47:158–163.
30. Sharifnia Z, Bandehpour M, Hamishehkar H, Mosaffa N, Kazemi B, Zarghami N. In-vitro transcribed mRNA delivery using PLGA/PEI nanoparticles into human monocyte-derived dendritic cells, Iran J Pharm Res 2019;18:1659-1675.
31. Yousefi S, Tahmoorespur M, Sekhavati MH. Cloning, expression and molecular analysis of Iranian Brucella melitensis Omp25 gene for designing a subunit vaccine. Res Pharm Sci 2016;11:412-418.
32. López-Goñi I, Guzmán-Verri C, Manterola L, Sola-Landa A, Moriyón I, Moreno E. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet Microbiol 2002;90:329-339.
33. Coronas-Serna JM, Louche A, Rodríguez-Escudero M, Roussin M, Imbert PR, Rodríguez-Escudero I, et al. The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog 2020;16:e1007979.
34. Horng T, Barton GM, Medzhitov R. TIRAP: An adapter molecule in the Toll signaling pathway. Nat Immunol 2001;2:835-841.
35. Christie PJ, Whitaker N, González-Rivera C. Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 2014;1843:1578-1591.
36. Giraldo AM, Mary C, Sivanesan D, Baron C. VirB6 and VirB10 from the Brucella type IV secretion system interact via the N-terminal periplasmic domain of VirB6. FEBS Lett 2015;589:1883-1889.
37. Atmakuri K, Cascales E, Christie PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 2004;54:1199-1211.
38. Fronzes R, Christie PJ, Waksman G. The structural biology of type IV secretion systems. Nat Rev Microbiol 2009;7:703-714.
39. Sangari FJ, Agüero J, Garcı́a-Lobo JM. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. The GenBank accession number for the sequence reported in this paper is U57100. Microbiol 2000;146:487-495.
40. Lillo AM, Tetzlaff CN, Sangari FJ, Cane DE. Functional expression and characterization of EryA, the erythritol kinase of Brucella abortus, and enzymatic synthesis of L-erythritol-4-phosphate. Bioorg Med Chem Lett 2003;13:737-739.
41.Chain PS, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Vergez LM, et al. Whole-genome analyses of speciation events in pathogenic Brucella. Infect Immun 2005;73:8353-8361.
42. DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, et al. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci 2002;99:443-448.
43. Esmaeili H. Brucellosis in Islamic republic of Iran. J Med Bacteriol 2014;3:47-57.
44. Dastjerdi MZ, Nobari RF, Ramazanpour J. Epidemiological features of human brucellosis in central Iran, 2006–2011. Public Health 2012;126:1058-1062.
45. Marin CM, Barberan M, De Bagués MJ, Blasco JM. Comparison of subcutaneous and conjunctival routes of Rev 1 vaccination for the prophylaxis of Brucella ovis infection in rams. Res Vet Sci 1990;48: 209-215.
46. Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present and future. Vet Microbiol 2002;90:479-496.
47. Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis: Current understanding and future approaches to vaccine development for mice and humans. Clin Microbiol Rev 2003;16:65-78.
48. Blasco JM, Diaz R. Brucella melitensis Rev-1 vaccine as a cause of human brucellosis. Lancet 1993; 342: 805.
49. de Bagüés MJ, Elzer PH, Blasco JM, Marin CM, Gamazo C, Winter AJ. Protective immunity to Brucella ovis in BALB/c mice following recovery from primary infection or immunization with subcellular vaccines. Infect Immun 1994;62:632-638.
50. Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Novel vaccine candidates against Brucella melitensis identified through reverse vaccinology approach. OMICS 2015;19:722-729.
51. Li X, Min M, Du N, Gu Y, Hode T, Naylor M, et al. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013; 2013: 387023.
52. Baldwin CL, Parent M. Fundamentals of host immune response against Brucella abortus: what the mouse model has revealed about control of infection. Vet Microbiol 2002;90:367-382.
53. Dornand J, Gross A, Lafont V, Liautard J, Oliaro J, Liautard JP. The innate immune response against Brucella in humans. Vet Microbiol 2002;90:383-394.
54. Alizadeh H, Dezfulian M, Rahnema M, Fallah J, Esmaeili D. Protection of BALB/c mice against pathogenic Brucella abortus and Brucella melitensis by vaccination with recombinant Omp16. Iran J Basic Med Sci 2019;22:1302-1307.
55. Olsen SC. Recent developments in livestock and wildlife brucellosis vaccination. Rev Sci Tech 2013;32:207-217.