Time-dependent behavior of the Staphylococcus aureus biofilm following exposure to cold atmospheric pressure plasma

Document Type : Original Article


1 Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran

2 Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran


Objective(s): Formation of Staphylococcus aureus biofilm leads to persistent infection in tissue or on exter-nal and indwelling devices in patients. Cold atmospheric plasma (CAP) is used for eradication of bacterial biofilms and it has diverse applications in the healthcare system. However, there is not sufficient information on the behavior of biofilms during the CAP exposure period.
Materials and Methods: Pre-established S. aureus biofilms were exposed to CAP for 0 to 360 sec, then subjected to washing steps and sonication. Subsequently, biomass, number of colonies, vitality of bacteria, structure of colonies, size of produced particles, and viability of bacteria were evaluated by different assays including crystal violet, colony-forming unit, MTT, scanning electron mi-croscopy, confocal laser scanning microscopy, and dynamic light scattering assays.
Results: The results showed that the strength of biomass increased in the first 60 sec, then decreased to less than no-CAP treated controls. Moreover, short CAP exposure (≤60 sec) ehances the fusion of the biofilm extracellular matrix and other components, which results in preservation of bacteria during ultra-sonication and washing steps compared with control biofilms. The S. aureus biofilm structure only breaks down following more CAP exposure (> 90 sec) and demolition. Interestingly, the 60 sec CAP exposure could cause the fusion of biofilm compo-nents, and large particles are detectable.
Conclusion: According to this study, an inadequate CAP exposure period prevents absolute eradication of biofilm and enhances the preservation of bacteria in stronger biofilm compartments.


1. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011; 2:445-459.
2. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37:1771-1776.
3. Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: a need to act J Intern Med 2014; 276:98-110.
4. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling 2011; 27:1017-1032.
5. Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 2010; 65:1955-1958.
6. Gries CM, Biddle T, Bose JL, Kielian T, Lo DD. Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection. Infect Immun 2020; 88:e00859-19.
7. Foster CE, Kok M, Flores AR, Minard CG, Luna RA, Lamberth LB et al. Adhesin genes and biofilm formation among pediatric Staphylococcus aureus isolates from implant-associated infections. PLoS One 2020; 15:e0235115.
8. Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 2012; 272:541-561.
9. Cheleuitte-Nieves CE, Diaz LL, Pardos de la Gandara M, Gonzalez A, Freiwald WA, de Lencastre HM, et al. Evaluation of topical lysostaphin as a novel treatment for instrumented rhesus macaques (Macaca mulatta) infected with methicillin-resistant Staphylococcus aureus. Comp Med 2020; 70:335-347.
10. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol 2008; 322:207-28.
11. Otter JA, Vickery K, Walker JT, deLancey Pulcini E, Stoodley P, Goldenberg SD, et al. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect 2015; 89:16-27.
12. Fridman G, Friedma G, Gutsol A, Shekhter A.B, Vasilets V.N, Fridman A. Applied plasma medicine. Plasma Processes Polym 2008; 5: 503-533.
13. Moreau M, Orange N, Feuilloley MG. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 2008; 26:610-617.
14. O’Connor N, Cahill O, Daniels S, Galvin S, Humphreys H. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections?. J Hosp Infect 2014; 88:59-65.
15. Atyabi SM, Sharifi F, Irani S, Zandi M, Mivehchi H, Nagheh Z. Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma. Cell Biochem Biophys 2016; 74:181-190.
16. Alkawareek MY, Algwari QT, Gorman SP, Graham WG, O’Connell D, Gilmore BF. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol Med Microbiol 2012; 65:381-384.
17. Cahill OJ, Claro T, Cafolla AA, Stevens NT, Daniels S, Humphreys H. Decontamination of Hospital Surfaces With Multijet Cold Plasma: A Method to Enhance Infection Prevention and Control?. Infect Control Hosp Epidemiol 2017; 38:1182-1187.
18. Taghizadeh L, Brackman G, Nikiforov A, van der Mullen J, Leys C, Coenye T. Inactivation of Biofilms Using a Low Power Atmospheric Pressure Argon Plasma Jet; the Role of Entrained Nitrogen. Plasma Process Polym 2015; 12: 75-81.
19. Xu Z, Shen J, Zhang Z, Ma J, Ma R, Zhao Y, et al. Inactivation Effects of Non-Thermal Atmospheric-Pressure Helium Plasma Jet on Staphylococcus aureus Biofilms. Plasma Process Polym 2015; 12: 827-835.
20. Traba C, Liang JF. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases. Biofouling 2011; 27:763-772.
21. Braný D, Dvorská D, Halašová E, Škovierová H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int J Mol Sci 2020; 21:2932.
22. Pavelić B, Švarc MZ, Šegović S, Bago I. Cold atmospheric plasma for bleaching endodontically treated tooth: a new clinical approach. Quintessence Int 2020; 51:364-371.
23. Friedman PC. Cold atmospheric pressure (physical) plasma in dermatology: where are we today?. Int J Dermatol 2020; 59:1171-1184.
24. Koban I, Geisel MH, Holtfreter B, et al. Synergistic effects of nonthermal plasma and disinfecting agents against dental biofilms In Vitro. ISRN Dent 2013; 573262.
25. Reuter S, Von Woedtke T, Weltmann KD. The kINPen - A review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D: Appl Phys 2018; 51: 1088-1361.
26. Shapourzadeh A, Rahimi-Verki N, Atyabi SM, et al. Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum. Arch Biochem Biophys 2016; 608:27-33.
27. Ehsani G, Fahmide F, Norouzian D, Atyabi SM, Ehsani P. Bioactivity determination of recombinant lysostaphin immobilized on glass surfaces modified by cold atmospheric plasma on Staphylococcus aureus. J Med Microbiol Infect Dis 2019; 7:132-137.
28. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, et al. Critical review on biofilm methods. Crit Rev Microbiol 2017; 43:313-351.
29. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007; 115:891-899.    
30. Koban I, Matthes R, Hübner NO, Welk A, Meisel P, Holtfreter B, et al. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys 2010; 12:073039.
31. Matthes R, Assadian O, Kramer A. Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms. GMS Hyg Infect Control 2014; 9.
32. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
33. Izumida FE, Moffa EB, Vergani CE, Machado AL, Jorge JH, Giampaolo ET. In vitro evaluation of adherence of Candida albicans, Candida glabrata, and Streptococcus mutans to an acrylic resin modified by experimental coatings. Biofouling 2014; 30:525–533.
34. Jena SS, Joshi HM, Sabareesh KP, Tata BV, Rao TS. Dynamics of deinococcus radiodurans under controlled growth conditions. Biophys J 2006; 91:2699-2707.
35. Avila-Novoa MG, Solís-Velázquez OA, Rangel-López DE, González-Gómez JP, Guerrero-Medina PJ, Gutiérrez-Lomelí M. Biofilm formation and detection of fluoroquinolone- and carbapenem-resistant genes in multidrug resistant acinetobacter baumannii. Can J Infect Dis Med Microbiol 2019:3454907.
36. Skogman ME, Vuorela PM, Fallarero A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot (Tokyo) 2012; 65:453-459.
37. Xu Z, Liang Y, Lin S, et al. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr Microbiol 2016; 73:474-482.
38. Fahmy HM, Mohamed SY, Gaber MH, Fahmy HM, Hassan AA, Abdelfatah GF. Effect of cold plasma on the bilayer lipid membrane. Artic J Bionanoscience 2018; 12:1–7.
39. Whitehead, JC. Plasma-catalysis: Is it just a question of scale?. Front Chem Sci Eng 2019; 13, 264–273.
40. Domingue G, Costerton JW, Brown MR. Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils. FEMS Immunol Med Microbiol. 1996; 16:223-228
41. Nowak J, Watala C, Boncler M. Antibody binding, platelet adhesion, and protein adsorption on various polymer surfaces. Blood Coagul Fibrinolysis 2014; 25:52-60.
42. Monsen T, Lövgren E, Widerström M, Wallinder L. In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections. J Clin Microbiol 2009; 47:2496-2501.
43. Dudek P, Grajek A, Kowalczewski J, Madycki G, Marczak D. Ultrasound frequency of sonication applied in microbiological diagnostics has a major impact on viability of bacteria causing PJI. Int J Infect Dis 2020; 100:158-163.
44. Kloos WE, Bannerman TL. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 1994; 7:117-140.
45. Traba C, Liang JF. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases. Biofouling 2011; 27:763-772.