Magnetic detection of albuminuria using hematite nanorods synthesized via chemical hydrothermal method

Document Type : Original Article


1 Department of Science, Faculty of Imam Mohammad Bagher, Mazandaran Branch, Technical and Vocational University, Sari, Iran

2 Department of Physics, Faculty of Basic Sciences, University of Mazandaran,Sari, Iran

3 Department of Physics, Faculty of Science, Velayat University, Iranshahr, Iran


Objective(s): Albuminuria is a biomarker in the diagnosis of kidney disease which is due to the presence of high albumin in the urine and is one of the complications of diabetes. In recent years, the methods used to identify albuminuria have been expensive and time-consuming. Furthermore, another problem is the lack of accurate measurement of albuminuria. This problem leads to kidney isolation as well as a decrease in erythropoietin levels. Therefore, the main aim of our work is to design a magnetic nanobiosensor with better sensitivity to detect minimal levels of albuminuria.
Materials and Methods: In the present work, we synthesized Hematite Nano Rods (HNRs) using FeCl3, NaOH and Cetyltrimethylammonium bromide (CTAB) precursors via the hydrothermal method. Then, HNRs were characterized using UV-vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM) techniques.
Results: The obtained results from clinical performance of the HNR nanobiosensor show that the magnetization changes of HNR in interaction with the albumin biomarker can determine the presence or absence of protein in biological samples. The accuracy and repeatability of the HNR nanobiosensor from the value of the R2 coefficient in the standard equation is 0.9743.
Conclusion: We obtained the standard curve through interaction of the HNRs with albumin protein. The standard equation is obtained by plotting the magnetization curve of a non-interacting sample to interacting samples in terms of protein concentration. The Bland-Altman statistical graph prove that the HNR nanobiosensor is as reliable as experimental methods.


1. Ito T, Ishikawa E, Ito M. Lumbar artery injury following renal biopsy. Clin Exp Nephrol 2016; 20:145-146.
2. Witkowska E, Szymborski T, KamiƄska A, Waluk J. Polymer mat prepared via forcespinning™ as a SERS platform for immobilization and detection of bacteria from blood plasma. Mater Sci Eng C 2017; 71:345-350.
3. Teo BM, Young DJ, Loh XJ. Magnetic Anisotropic particles: toward remotely actuated applications. Part Part Syst Charact 2016; 33:709-728.
4. Su X, Tan MJ, Li Z, Wong M, Rajamani L, Lingam G, et al. Recent progress in using biomaterials as vitreous substitutes. Biomacromolecules 2015; 16:3093-3102.
5. Ye E, Chee PL, Prasad A, Fang X, Owh C, Yeo VJJ, et al. Supramolecular soft biomaterials for biomedical applications. In-Situ Gelling Polymers 2015; 17:107-125.
6. Glazyrin YE, Veprintsev DV, Ler IA, Rossovskaya ML, Varygina SA, Glizer SL, et al. Proteomics-based machine learning approach as an alternative to conventional biomarkers for differential diagnosis of chronic kidney diseases. Int J Mol Sci 2020; 21:4802-4819.
7. Robert R, Pihet M. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia 2008; 166:295-306.
8. Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: the best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2019; 124:1246-1255.
9. Vatandoost N, Ghanbari J, Mojaver M, Avan A, Ghayour-Mobarhan M, Nedaeinia R, et al. Early detection of colorectal cancer: From conventional methods to novel biomarkers. J Cancer Res Clin Oncol 2016; 142:341-351.
10. Salmi TT, Collin P, Reunala T, Mäki M, Kaukinen K. Diagnostic methods beyond conventional histology in coeliac disease diagnosis. Dig Liver Dis 2010; 42:28-32.
11. Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, et al. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. Mater Sci Eng C 2016; 63:185-191.
12. Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, et al. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol 2012; 69:1318-1325.
13. Jhala N, Jhala D, Vickers SM, Eltoum I, Batra SK, Manne U, et al. Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am J Clin Pathol 2006; 126:572-579.
14. Ying H, Feng Ying S, Yan Hong W, You Ming  H, Fa You Z, Hong Xiang Z, et al. Micro RNA-155 from sputum as noninvasive biomarker for diagnosis of active pulmonary tuberculosis. Iran J Basic Med Sci 2020; 23:1419-1425.
15. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101:2087-2092.
16. Wang YN, Ma SX, Chen YY, Chen L, Liu BL, Liu QQ, et al. Chronic kidney disease: biomarker diagnosis to therapeutic targets. Clin Chim Acta 2019; 499:54-63.
17. Sanjay ST, Fu G, Dou M, Xu F, Liu R, Qi H, et al. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 2015; 140:7062-7081.
18. Hofland J, Zandee WT, de Herder WW. Role of biomarker tests for diagnosis of neuroendocrine tumours. Nat Rev Endocrinol 2018; 14:656-669.
19. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res 2018; 197:470-477.
20. Yang F, Liu DY, Guo JT, Ge N, Zhu P, Liu X, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol 2017; 23:8345-8354.
21. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating  microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 2012; 41:1897-1912.
22. Hewitt SM, Dear J, Star RA. Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 2004; 15:1677-1689.
23. Bahari A, Roeinfard M, Ramzannezhad A. Characteristics of Fe3O4/ZnO nanocomposite as a possible gate dielectric of nanoscale transistors in the field of cyborg. J Mater Sci Mater Electron 2016; 27:9363-9369.
24. Lu Y. Methylated DNA/RNA in body fluids as biomarkers for lung cancer. Biol Proced Online 2017; 19:1-9.
25. Han P, Ivanovski S. Effect of saliva collection methods on the detection of periodontium-related genetic and epigenetic biomarkers—a pilot study. Int J Mol Sci 2019; 20:4729-4747.
26. Gholamian S, Hosseini SR, Rashidlamir A, Aghaalinejad H. The effects of interval aerobic training on mesenchymal biomarker gene expression, the rate of tumor volume, and cachexia in mice with breast cancer. Iran J Basic Med Sci 2020; 23:244-250.
27. KosakaN, IguchiH, OchiyaT. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101:2087-2092.
28. Ferreira-García MG, Hernandez-Martinez AR, Esparza R, Molina GA, Rodriguez-Melgarejo F, Jiménez S, et al. Effects of extraction solvents on photoluminescent properties of eysenhardtia polystachia and their potential usage as biomarker. Mater Sci Eng C 2017; 72:42-52.
29. Choi SJ, Lee I, Jang BH, Youn DY, Ryu WH, Park CO, et al. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Analyt Chem 2013; 85:1792-1796.
30. Huang Z, McWilliams A, Lui H, Mc Lean DI, Lam S, Zeng H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 2003; 107:1047-1052.
31. Kaneko S, Takasaki H, May S. Application of mechanical diagnosis and therapy to a patient diagnosed with de Quervain’s disease: a case study. J Hand Ther 2009; 22:278-284.
32. Huysmans MC, Longbottom CH, Pitts N. Electrical methods in occlusal caries diagnosis: An in vitro comparison with visual inspection and bite–wing radiography. Caries Res 1998; 32:324-329.
33. Zhou C, Wu H, Wang M, Huang C, Yang D, Jia N. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling. Mater Sci Eng C 2017; 78:817-825.
34. Ramzannezhad A, Bahari A, Hayati A, Najafi-Ashtiani H. Magnetic nanobiosensors in detecting Microalbuminuria (MAU), using Fe3O4 nanorods synthesized via microwave-assisted method. Mater Sci Eng B 2021; 268:115123.
35. Ramzannezhad A, Gill P, Bahari A. Fabrication of magnetic
nanorods and their applications in medicine. BioNanoMaterials
2017; 18:3-4.
36. Bland JM, Altman D.Statistical methods for assessing agreement between two methods of clinical measurement. The lancet 1986; 327:307-310.
37. Rajar K, Karakus B, Koc K, Alveroglu E. One pot synthesis and characterization of Fe3O4 nanorod-PNIPA nanogel composite for protein adsorption. Mater Sci Eng C 2016; 68:59-64.
38. Smith DK, Miller NR, Korgel BA. Iodide in CTAB prevents gold nanorod formation. langmuir 2009; 25:9518-9524.
39. Ji GB, Tang SL, Ren SK, Zhang FM, Gu BX, Du YW. Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process. J Cryst Growth 2004; 270:156-161.
40. Xiao C, Ding H, Shen C, Yang T, Hui C, Gao HJ. Shape-controlled synthesis of palladium nanorods and their magnetic properties. J Phys     Chem C 2009; 113:13466-13469.
41. GuardiaP, LabartaA, BatlleX. Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C 2010; 115:390-396.
42. Parving HH, Oxenbøll B, Aa Svendsen P, Sandahl Christiansen J, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol 1982; 100:550-555.
43. Vassalotti JA, Stevens LA, Levey AS. Testing for chronic kidney disease: a position statement from the national kidney foundation. Am J Kidney Dis 2007; 50:169-180.
44. Ruggenenti P, Gaspari F, Perna A, Remuzzi G. Cross sectional longitudinal study of spot morning urine protein: creatinine ratio, 24 hour urine protein excretion rate, glomerular filtration rate, and end stage renal failure in chronic renal disease in patients without diabetes. Bmj 1998; 316:504-509.
45. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: Improving global outcomes (KDIGO). Kidney Int 2005; 67:2089-2100.
46. Wang Z, Hill S, Luther JM, Hachey DL, Schey KL. Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics 2012; 12:329-338.
47. Marshall T, Williams KM. Total protein determination in urine: elimination of a differential response between the coomassie blue and pyrogallol red protein dye-binding assays. Clin Chem 2000; 46: 392-398.
48. Gregg KA, Perera SC, Lawes G, Shinozaki S, Brock SL. Controlled synthesis of MnP nanorods: Effect of shape anisotropy on magnetization. Chem Mater 2006; 18:879-886.
49. Huang Z, ZhuY, Zhang J, Yin G. Stable biomimetic superhydrophobicity and magnetization film with Cu-ferrite nanorods. J Phys Chem C 2007; 111:6821-6825.
50. KalidasanV, Liu XL, Herng TS, Yang Y, Ding J. Bovine serum albumin-conjugated ferrimagnetic iron oxide nanoparticles to enhance the biocompatibility and magnetic hyperthermia performance. Nano-Micro Lett 2016; 8:80-93.
51. Nacev A, Weinberg IN, Stepanov PY, Kupfer S, Mair LO, Urdaneta MG, et al. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett 2014; 15:359-364.
52. Casco M, Olsen T, Herbst A, Evans G, Rothermel T, Pruett L, et al. Iron oxide nanoparticles stimulates extra-cellular matrix production in cellular spheroids. Bioeng 2017; 4:1-16.
53. Giavarina D. Understanding  bland altman analysis. Biochem Medica 2015; 25: 141-151.