Antimicrobial resistance patterns, virulence gene profiles, and genetic diversity of Salmonella enterica serotype Enteritidis isolated from patients with gastroenteritis in various Iranian cities

Document Type : Original Article

Authors

1 Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran

2 Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Iran

4 Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5 Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

6 Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran

Abstract

Objective(s): This study aimed to evaluate antibiotic resistance profiles and presence of virulence genes among Salmonella enterica serovar Enteritidis (S. Enteritidis) isolated from patients with gastroenteritis in various regions of Iran. Moreover, genetic relatedness among the strains was assessed by pulsed-field gel electrophoresis (PFGE).
Materials and Methods: From April through September 2017, 59 Salmonella strains were isolated from 2116 stool samples. Of these strains, 27 S. Enteritidis were recovered. These strains were subjected to disk diffusion tests, polymerase chain reaction (PCR) for detection of virulence genes (invA, hilA, pefA, rck, stn, ssrA, ssaR, sefA, spvC, sipA, sipC, sopB, sopE, and sopE2), and PFGE.
Results: High prevalence of resistance towards cefuroxime (n = 20, 74.1%) and ciprofloxacin (n = 13, 48.2%) were demonstrated. All tested strains possessed invA, hilA, sefA, sipA, sopB, and sopE. The least prevalent virulence gene was rck (n = 6; 22.2%). Based on combinations of virulence genes, 12 virulotypes were observed. The most common virulotype was VP2 (n = 12; 44.4%), harboring all of the virulence genes except for rck. PFGE typing showed only two distinct fingerprints among tested strains. Each fingerprint had completely different virulotypes. Notably, VP4 (harboring all genes except for rck and spvC) was only presented in pulsotype A, while VP2 was confined to pulsotype B.
Conclusion: S. Enteritidis strains were derived from a limited number of clones, suggesting that it is highly homogenous. Future works should consider combinations of other genotyping methods together with larger sample sizes from more diverse sources.

Keywords


1.    Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 2010;50:882-889.
2.    Tennant SM, MacLennan CA, Simon R, Martin LB, Imran Khan M. Nontyphoidal salmonella disease: Current status of vaccine research and development, Vaccine 2016;34:2907-2910.
3.    Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World 2019;12:504-521.
4.    Kim YJ, Park KH, Park DA, Park J, Bang BW, Lee SS, et al. Guideline for the antibiotic use in acute gastroenteritis. Infect Chemother 2019;51:217-243.
5.    Eng SK,  Pusparajah P,  Ab Mutalib NS,  Ser HL, KG Chan, Lee LH. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015;8:284-293.
6.    Browne AJ, Hamadani BHK, Kumaran EAP, Rao P, Longbottom J, Harriss E, et al. Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis. BMC Med 2020;18:1-33.
7.    Tack B, Vanaenrode J, Verbakel JY, Toelen J, Jacobs J. Invasive non-typhoidal Salmonella infections in sub-Saharan Africa: A systematic review on antimicrobial resistance and treatment. BMC Med 2020;18:212-245.
8.    McDermott PF, Zhao S, Tate H. Antimicrobial resistance in nontyphoidal Salmonella. Microbiol Spectr 2018;4:ARBA-0014-2017.
9.    Ramos-Morales F. Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012;2012:787934.
10.    Lou L, Zhang P, Piao R, Wang Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol. 2019;9:270.
11.    Jennings E, Thurston TLM, Holden DW Salmonella SPI-2 type III secretion system effectors: Molecular mechanisms and physiological consequences. Cell Host Microbe 2017;22:217-231.
12.    Eshraghi S, Soltan Dalall MM, Fardsanei F, Salehi TZ, Ranjbar R, Nikmanesh B, et al, Salmonella enteritidis and antibiotic resistance patterns: a study on 1950 children with diarrhea. Tehran Univ Med J 2010;12:876-882.
13.    Firoozeh F,  Shahcheraghi F,  Salehi TZ,  Karimi V,  Aslani MM. Antimicrobial resistance profile and presence of class I integrongs among Salmonella enterica serovars isolated from human clinical specimens in Tehran, Iran. Iran J Microbiol 2011;3:112-117.
14.    Fardsanei F, Soltan Dallal MM, Douraghi M, Memariani H, Bakhshi B, Salehi TZ, et al. Antimicrobial resistance, virulence genes and genetic relatedness of Salmonella enterica serotype Enteritidis isolates recovered from human gastroenteritis in Tehran, Iran. J Glob Antimicrob Resist 2018;12:220-226.
15.    Soltan Dallal MM, Khalilian M, Masoumi Asl H, Bakhtiari R, Davoodabadi A, Sharifi Yazdi MK, et al. Molecular epidemiology and antimicrobial resistance of Salmonella spp. isolated from resident patients in Mazandaran province, northern Iran. J Food Qual Haz Cont 2016;3:146-151.
16.     Mahmoudi S, Pourakbari B, Moradzadeh M, Eshaghi H, Ramezani A, Ashtiani MTH, et al. Prevalence and antimicrobial susceptibility of Salmonella and Shigella spp. among children with gastroenteritis in an Iranian referral hospital. Microb Pathog 2017;109:45-48.
17.    Procop GW, Church DL, Hall GS, Janda WM, Koneman EW, Schreckenberger PC, et al. Koneman’s color atlas and textbook of diagnostic microbiology. seventh ed., Wolters Kluwer, Philadelphia, 2016.
18.    Fardsanei F, Nikkhahi F, Bakhshi B, Salehi TZ, Asrafi Tamai I, Soltan Dallal MM. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG)5-PCR and ERIC-PCR. New Microbes New Infect 2016;14:24-30.
19.    CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing, 29th ed., Wayne, PA: 2019;Clinical and Laboratory Standards Institute.
20.     Raman G, Avendano EE, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2018;7:79-102.
21.    Talebreza A, Memariani M, Memariani H, Shirazi MH, Shamsabad PE, Bakhtiari M. Prevalence and antibiotic susceptibility of Shigella species isolated from pediatric patients in Tehran. Arch Pediatr Infect Dis 2016;4:e32395.
22.    Eshaghi Zadeh SH, Fahimi H, Fardsanei F, Soltan Dallal MM. Antimicrobial resistance and presence of class 1 integrons among different serotypes of Salmonella spp. recovered from children with diarrhea in Tehran, Iran. Infect Disord Drug Targets  2019;19:1-7.
23.     Chiu CH, Ou JT. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture– multiplex PCR combination assay. J Clin Microbiol 1996;34:2619-2622.
24.    Wang YP, Li L, Shen JZ, Yang FJ, Wu YN. Quinolone-resistance in Salmonella is associated with decreased mRNA expression of virulence genes invA and avrA, growth and intracellular invasion and survival. Vet Microbiol 2009;133:328-334.
25.    Capuano F, Mancusi A, Capparelli R, Esposito S, Proroga YTR. Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog Dis 2013;10:963-968.
26.    Prager R, Fruth A, Tschäpe H. Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae, FEMS Immunol Med Microbiol 1995;12:47-50.
27.    Heithoff DM, Shimp WR, Lau PW, Badie G, Enioutina EY, Daynes RA, et al. Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol 2008;74:1757-1766.
28.    Hu Q, Coburn B, Deng W, Li Y, Shi X, Lan Q, et al. Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. J Clin Microbiol 2008;46:1330-1336.
29.    Kutsukake K, Nakashima H, Tominaga A, Abo T. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 2006;188:950-957.
30.    Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, et al. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 2005;73:146-154.
31.    Mirzaie S, Hassanzadeh M, Ashrafi I. Identification and characterization of Salmonella isolates from captured house sparrows. Turk J Vet Anim Sci 2010;34:181-186.
32.    Hopkins KL, Threlfall EJ. Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. J Med Microbiol, 2004;53:539-543.
33.    Fardsanei F, Soltan Dallal MM, Douraghi M, Salehi TZ, Mahmoodi M, Memariani H, et al. Genetic diversity and virulence genes of Salmonella enterica subspecies enterica serotype Enteritidis isolated from meats and eggs. Microb Pathog. 2017;107:451-456.
34.    Stanaway JD, Parisi A, Sarkar K, Blacker BF, Reiner RC, Hay SI, et al. The global burden of non-typhoidal Salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019;19:1312-1324.
35.    Arya G, Holtslander R, Robertson J, Yoshida C, Harris J, Parmley J, et al. Epidemiology, pathogenesis, genoserotyping, antimicrobial resistance, and prevention and control of non-typhoidal Salmonella serovars. Curr Clin Micro Rpt 2017;4:43-53.
36.    de Freitas Neto OC, Penha Filho RAC, Barrow P. Sources of human non-typhoid salmonellosis: a review. Braz J Poultry Sci 2010;12:1-11.
37.     Soltan Dallal MM, Sharifi Yazdi MK, Mirzaei N, Kalantar E. Prevalence of Salmonella spp. in packed and unpacked red meat and chicken in south of Tehran. Jundishapur J Microbiol 2014;7:e9254.
38.     Moosavy MH, Esmaeili S, Amiri FB, Mostafavi E, Salehi TZ. Detection of Salmonella spp in commercial eggs in Iran. Iran J Microbiol 2015;7:50-54.
39.     Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S. Fluoroquinolone resistance in Salmonella: Insights by whole-genome sequencing. Microb Genom 2018;4:e000195.
40.    El-Tayeb MA, Ibrahim ASS, Al-Salamah AA, Almaary KS, Elbadawi YB. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz J Microbiol 2017;48:499-508.
41.    Maraki S, Papadakis IS. Serotypes and antimicrobial resistance of human nontyphoidal isolates of Salmonella enterica from Crete, Greece. Interdiscip Perspect Infect Dis 2014;2014:256181.
42.    Qu M, Lv B, Zhang X, Yan H, Huang Y, Qian H, et al. Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhea in Beijing, China (2010-2014). Gut Pathog 2016;8:31-46.
43.    Han J, Gokulan K, Barnette D, Khare S, Rooney AW, Deck J, et al. Evaluation of virulence and antimicrobial resistance in Salmonella enterica serovar Enteritidis isolates from humans and chicken- and egg-associated sources. Foodborne Pathog Dis 2013;10:1008-1115.
44.    Nair DVT, Venkitanarayanan K, Kollanoor Johny A. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 2018;7:167.
45.    Aljindan RY, Alkharsah KR. Pattern of increased antimicrobial resistance of Salmonella isolates in the Eastern Province of KSA. J Taibah Univ Med Sci 2020;15:48-53.
46.     Campioni F, Bergamini AMM,  Falcão JP. Genetic diversity, virulence genes and antimicrobial resistance of Salmonella Enteritidis isolated from food and humans over a 24-year period in Brazil. Food Microbiol 2012;32:254-264.
47.    Marshall BM, Levy SB. Food animals and antimicrobials: Impacts on human health. Clin Microbiol Rev 2011;24:718-733.
48.    Fernández J, Guerra B, Rodicio MR. Resistance to carbapenems in non-typhoidal Salmonella enterica serovars from humans, animals and food. Vet Sci 2018;5:40.
49.    Retamal P, Fresno M, Dougnac C, Gutierrez S, Gornall V, Vidal R, et al. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile. Front Microbiol 2015;6:464-481.
50.    Zou M, Keelara S, Thakur S. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from humans by antimicrobial resistance, virulence genes, and pulsed-field gel electrophoresis. Foodborne Pathog Dis. 2012;9:232-238.
51.    Myeni SK, Wang L, Zhou D. SipB-SipC complex is essential for translocon formation. PLoS One 2013;8:e60499.
52.    Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N, Danbara H. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol 2012;14:485-499.
53.    Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A. An updated view on the Rck Invasin of Salmonella: still much to discover. Front Cell Infect Microbiol 2017;7:500.
54.    Chopra AK, Huang JH, Xu XJ, Burden K, Niesel DW, Rosenbaum MW. Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathog. 1999;27:155-171.
55.    Deguenon E, Dougnon V, Lozes E, Maman N, Agbankpe J, Abdel-Massih RM, et al. Resistance and virulence determinants of faecal Salmonella spp. isolated from slaughter animals in Benin. BMC Res Notes 2019;12:317-329.
56.     Wattiau P, Boland C, Bertrand S. Methodologies for Salmonella enterica subsp. enterica subtyping: Gold standards and alternatives. Appl Environ Microbiol 2011;77:7877-7885.
57.    Rahmani M, Peighambari SM, Svendsen CA, Cavaco LM, Agersø Y, Hendriksen RS. Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran. BMC Vet Res 2013;9:66-81.
58.    Dudek B, Książczyk M, Krzyżewska E, Rogala K, Kuczkowski M, Woźniak-Biel A, et al. Comparison of the phylogenetic analysis of PFGE profiles and the characteristic of virulence genes in clinical and reptile associated Salmonella strains. BMC Vet Res 2019;15:312-333.
59.    Son I, Zheng J, Keys CE, Zhao S, Meng J, Brown EW. Analysis of pulsed field gel electrophoresis profiles using multiple enzymes for predicting potential source reservoirs for strains of Salmonella enteritidis and Salmonella typhimurium isolated from humans. Infect Genet Evol 2013;16:226-233.
60.    Ziebell K, Chui L, King R, Johnson S, Boerlin P, Johnson RP. Subtyping of Canadian isolates of Salmonella Enteritidis using multiple locus variable number tandem repeat analysis (MLVA) alone and in combination with pulsed-field gel electrophoresis (PFGE) and phage typing. J Microbiol Methods 2017;139:29-36.