Anti-LINGO -1 improved remyelination and neurobehavioral deficit in cuprizone-induced demyelination

Document Type : Original Article


1 Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, Department of Nursing, Abadan Faculty of Medical Sciences, Abadan, Iran

2 Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran

5 Department of Neurology, Neuroscience Institute, MS Research Center, Tehran University of Medical Sciences, Tehran, Iran


Objective(s): Central nervous system demyelination is the main feature of multiple sclerosis (MS).  The most important unmet need in MS is use of treatments that delay the progression of the disease. Leucine-rich repeat and Immunoglobulin-like domain containing NOGO receptor-interacting protein 1(LINGO-1) have been known as inhibitors of oligodendrocyte differentiation and myelination.
Materials and Methods: We investigated LINGO-1 antibody effects on remyelination and neurobehavioral deficit using cuprizone-induced demyelination. Animals were randomly divided into three groups (n = 10): (1) Control group; received the regular diet, (2) CPZ group; normal saline was injected intraperitoneally, and (3) Treatment group; LINGO-1 antibody (10 mg/kg) was injected IP once every six days for 3 weeks. We assessed the level of myelin basic protein (MBP), neurofilament heavy chain (NF200), and Brain-derived neuroprotective factor (BDNF) in the corpus callosum (CC) by immunostaining against MBP, NF200, and BDNF.
Results: We found  decreased levels of MBP, NF200, and BDNF in demyelinated CC, and anti-LINGO-1 treatment improved demyelinated structures. Furthermore, motor impairment was measured by Open-field (OFT) and Balance beam tests. In the treatment group, motor impairment was significantly improved.
Conclusion: These results provide evidence that LINGO-1 antibody can improve remyelination and neurobehavioral deficit.


1. Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. The cuprizone model: dos and do Nots. Cells 2020;9:843.
2.    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A,Vukusic S and A. Rocca M. Multiple sclerosis. Nature reviews disease primers 2018.
3.    Münzel EJ, Williams A. Promoting remyelination in multiple sclerosis-recent advances. Drugs 2013;73:2017-2029.
4.    Nadeem M, Sklover L, A Sloane J. Targeting remyelination treatment for multiple sclerosis. World J Neurol  2015; 5: 5-16.
5.    Ava G, Bartolomei I, Costantino A, Berra M, Venturoli S, Salvi F, et al. Long-term influence of combined oral contraceptive use on the clinical course of relapsing-remitting multiple sclerosis. Fertil Steril 2014;102:116-122.
6.    Sena A, Couderc R, Vasconcelos JC, Ferret-Sena V, Pedrosa R. Oral contraceptive use and clinical outcomes in patients with multiple sclerosis. J Neurol Sci 2012 15;317:47-51.
    7.    Ineichen BV, Plattner P S, Good N, Roland M, Linnebank M,  Schwab ME . Nogo-A Antibodies for Progressive Multiple Sclerosis. CNS Drugs 2017 ; 31:187-198.
8.    Noor NA, Fahmy HM, Mohammed FF, Elsayed AA, Radwan NM. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats. Int J Clin Exp Pathol 2015 ;8: 6269-6286.
9.    Mohamed A, Al-Kafaji G, Almahroos A, Almosawi Z, Alalwan H, Abdulla R, et al. Effects of enhanced environment and induced depression on cuprizone mouse model of demyelination. Exp Ther Med 2019;18:566-572.
10.    Khademi M, Dring AM, Gilthorpe JD, Wuolikainen A, Al Nimer F, Harris RA, et al. Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: A reflection by cerebrospinal fluid biomarkers. PLoS One 2013; 8: 63172.
11.    Martinez B, V Peplow Ph. Protective effects of pharmacological therapies in animal models of multiple sclerosis: a review of studies 2014–2019. Neural Regen Res 2020; 15:1220-1234.
12.    Kremer D, Akkermann R, Küry P, Dutta R. Current advancements in promoting remyelination in multiple sclerosis. Mult Scler 2019 ; 25 :7-14.
13.    Cunniffe N,  Coles A. Promoting remyelination in multiple sclerosis. J Neurol 2021; 268: 30–44.
14.    Zeis T, Probst A, Steck AJ, Stadelmann C, Brück W, Schaeren-Wiemers N. Molecular changes in white matter adjacent to an active demyelinating lesion in early multiple sclerosis. Brain Pathol 2009;19: 459-466.
15.    Irvine KA, Blakemore WF. Remyelination protects axons from demyelination associated axon degeneration. Brain 2008;131:1464-1477.
16.    L. Andrews J, Fernandez-Enright F. A decade from discovery to therapy: Lingo-1, the dark horse in neurological and psychiatric disorders. University of Wollongong Research Online. Faculty of Science, Medicine and Health – Papers 2015.
17.    Mandai K, Guo T, St Hillaire C, Meabon JS, Kanning KC, Bothwell M, et al. LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 2009 ;63:614-627.
18.    Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005; 8: 745-751.
19.    Wang J, Sui RX, Miao Q, et al. Effect of Fasudil on remyelination following cuprizone-induced demyelination [retracted in: CNS Neurosci Ther. 2020; 26:778]. CNS Neurosci Ther 2020;26:76-89.
20.    Rémy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: A combined structural and functional MRI study. Neuroimage 2005;25:253-266.
21.    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 2007;13:1228-1233.
22.    Sun JJ, Ren QG, Xu L and  Zhang Zh-J. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice. Oncotarget  2016; 14235.
23.    Shao Z, Lee X, Huang G, Sheng G, Henderson CE, Louvard D, et al. LINGO-1 regulates Oligodendrocyte differentiation through the cytoplasmic gelsolin signaling pathway. J Neurosci 2017;37:3127-3137.
24.    Gresle MM, Liu Y, Kilpatrick TJ, Kemper D, Wu QZ, Hu B, et al. Blocking LINGO-1 in vivo reduces degeneration and enhances regeneration of the optic nerve. Mult Scler J Exp Transl Clin. 2016;2:1-13.
25.    Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 2013;51:567-572.
26.    Xu H, Yang HJ, Zhang Y, Clough R, Browning R, Li XM. Behavioral and neurobiological changes in C57BL/6 mice exposed to cuprizone. Behav Neurosci 2009;123:418-429.
27.    Zhu K, Sun J, Kang Zh, Zou Z, Wu G and  Wang J. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance. Frontiers in Neuroscience 2017.
28.    Sun J, Zhou H, Bai F, Ren Q, Zhang Z. Myelin injury induces axonal transport impairment but not AD-like pathology in the hippocampus of cuprizone-fed mice. Oncotarget 2016;7: 30003-30017.
29.    Benardais K, Kotsiari A, Skuljec J, Koutsoudaki PN, Gudi V, Singh V, et al. Cuprizone [Bis(Cyclohexylidenehydrazide)] is selectively toxic for mature oligodendrocytes. Neurotox Res 2013;24:244-250.
30.    Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 2009;65:304-315.
31.    Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M, Pepinsky RB, et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci 2007;27:220-225.
32.    Sestakova N, Puzserova A, Kluknavsky M, Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol 2013; 6: 126–135.
33.    Luong TN, Carlisle HJ, Southwell A and Patterson PH. Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp 2011; 49:2376.
34.    Buddeberg BS, Kerschensteiner M, Merkler D, Stadelmann C, Schwab ME. Behavioral testing strategies in a localized animal model of multiple sclerosis. J Neuroimmunol 2004; 153:158-170.
35.    Tagge I, O’Connor A, Chaudhary P, Pollaro J, Berlow Y, Chalupsky M, et al. Spatio-Temporal patterns of demyelination and remyelination in the cuprizone mouse model. PLoS One 2016; 11: e0152480.
36.    Honarvar F, Hojati V, Bakhtiari N, Vaezi G, Javan M. Myelin protection by Ursolic acid in cuprizone-induced demyelination in mice. Iran J Pharm Res 2019;18:1978-1988
37.    Hillis JM, Davies J, Mundim MV, Al-Dalahmah O, Szele FG. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation 2016;13:190.
38.    Glenn JD, Smith MD, Kirby LA, Baxi EG, Whartenby KA. Disparate effects of mesenchymal stem cells in experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. PLoS One 2015;10:e0139008.
39.    Mozafari S, Sherafat MA, Javan M, Mirnajafi-Zadeh J, Tiraihi T. Visual evoked potentials and MBP gene expression imply endogenous myelin repair in adult rat optic nerve and chiasm following local lysolecithin induced demyelination. Brain Res 2010; 1351: 50-56.
40.    Zhou Y, Simpson S Jr, Charlesworth JC, van der Mei I, Lucas RM, Ponsonby AL, et al. Variation within MBP gene predicts disease course in multiple sclerosis. Brain Behav 2017; 7: e00670.
41.    Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O. Five decades of cuprizone, an updated model to replicate demyelinating diseases. Curr Neuropharmacol 2019;17:129-141.
42.    Al-Chalabi A, Miller CC. Neurofilaments and neurological disease. Bioessays 2003; 25:346-355.
43.    Varhaug KN, Torkildsen Ø, Myhr KM, Vedeler CA. Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol 2019;10:338.
44.    Petzold A, Gveric D, Groves M, et al. Phosphorylation and compactness of neurofilaments in multiple sclerosis: indicators of axonal pathology. Exp Neurol 2008; 213:326-335.
45.    Gudi V, Gai L, Herder V, Tejedor LS, Kipp M, Amor S, et al. Synaptophysin is a reliable marker for axonal damage. J Neuropathol Exp Neurol 2017;76:109-125.
46.    Voskuhl RR, Itoh N, Tassoni A, Matsukawa MA, Ren E, Tse V, et al. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci U S A 2019;116:10130-10139.
47.    Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, Dreyfus CF. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci 2014;34:8186-8196.
48.    Pifarré P, Gutierrez-Mecinas M, Prado J, Usero L, Roura-Mir C, Giralt M, et al. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions. Exp Neurol 2014; 251:58-71.
49.    VonDran MW, Singh H, Honeywell JZ, Dreyfus CF. Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion. J Neurosci 2011; 31:14182-14190.
50.    Mohammadi-Rad M, Ghasemi N, Aliomrani M. Evaluation of apamin effects on myelination process in C57BL/6 mice model of multiple sclerosis. Res Pharm Sci 2019;14:424-431.
51.    Fahmy H M,  Noor NA, F. Mohammed F, A. Elsayed  A, M. Radwan N. Nigella sativa as an anti-inflammatory and promising remyelinating agent in the cortex and hippocampus of experimental autoimmune ncephalomyelitis-induced rats. The Journal of Basic & Applied Zoology 2014; 67:182–195.