Cardioprotective effects of co-administration of thymoquinone and ischemic postconditioning in diabetic rats

Document Type : Original Article

Authors

1 Department of Cardiology, Gansu Gem Flower Hospital, Lanzhou, Gansu, 730060, China

2 Department of Cardiology, Xigu People’s Hospital,Lanzhou, Gansu, 730060, China

Abstract

Objective(s): Ischemia/reperfusion (I/R) is a leading cause of myocardial infarction (MI) injury, contributing to excess injury to cardiac tissues involved in inflammation, apoptosis, and oxidative stress. The present study was conducted to examine the effects of combined thymoquinone (TQ) with ischemic postconditioning (IPostC) therapy on apoptosis and inflammation due to I/R injury in diabetic rat hearts.
Materials and Methods: A single dose injection of streptozotocin (STZ; 60 mg/kg) was administered to thirty-two Wistar male rats to induce diabetes. Hearts were fixed on a Langendorff setting and exposed to a 30 min regional ischemia subsequently to 60 min reperfusion. IPostC was induced at the onset of reperfusion by 3 cycles of 30 sec R/I. ELISA, Western blotting assay, and TUNEL staining were applied to assess the cardioprotective effect of IPostC and TQ against I/R injury in diabetic and non-diabetic rats.
Results: Administration of TQ alone in non-diabetic isolated hearts significantly diminished CK-MB, TNF-α, IL-1β, and apoptosis and enhanced p-GSK-3β and Bcl-2 (p <0.05). Following administration of TQ, the cardioprotective effects of IPostC by elevating p-GSK-3β and Bcl-2 and alleviating apoptosis and inflammation were reestablished compared with non-IPostC diabetic hearts.
Conclusion: These results provide substantial evidence that co-administration of TQ plus IPostC can exert cardioprotective effects on diabetic myocardium during I/R damage by attenuating the inflammatory response and apoptosis.

Keywords


1.    Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, et al. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Sci Rep 2017; 7:42027-42038.
2.    Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, et al. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep 2017; 7:41337-41350.
3.    Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol 2011; 7:113-170.
4.    Jian J, Xuan F, Qin F, Huang R. The antioxidant, anti-inflammatory and anti-apoptotic activities of the bauhinia championii flavone are connected with protection against myocardial ischemia/reperfusion injury. Cell Physiol Biochem 2016; 38:1365-1375.
5.    Giustino G, Dangas GD. Ischemia-reperfusion injury and ischemic post-conditioning in acute myocardial infarction: Lost in translation. Catheter Cardiovasc Interv 2017; 90:1068-1069.
6.    Badalzadeh R, Azimi A, Alihemmati A, Yousefi B. Chronic type-I diabetes could not impede the anti-inflammatory and anti-apoptotic effects of combined postconditioning with ischemia and cyclosporine A in myocardial reperfusion injury. J Physiol Biochem 2017; 73:111-120.
7.    Najafi M, Noroozi E, Javadi A, Badalzadeh R. Anti-arrhythmogenic and anti-inflammatory effects of troxerutin in ischemia/reperfusion injury of diabetic myocardium. Biomed Pharmacother 2018; 102:385-391.
8.    Pagliaro P, Femminò S, Popara J, Penna C. Mitochondria in cardiac postconditioning. Front Physiol 2018;9:287-295.
9.    Forini F, Nicolini G, Iervasi G. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: role of thyroid hormone triiodothyronine. Int j mol sci 2015; 16:6312-6336.
10.    Badalzadeh R, Mokhtari B, Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. The J Physiol Sci 2015; 65:201-215.
11.    Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 2012; 11:67-80.
12.    Hassan MQ, Akhtar M, Ahmed S, Ahmad A, Najmi AK. Nigella sativa protects against isoproterenol-induced myocardial infarction by alleviating oxidative stress, biochemical alterations and histological damage. Asian Pac J Trop Biomed 2017; 7:294-299.
13.    Lu Y, Feng Y, Liu D, Zhang Z, Gao K, Zhang W, et al. Thymoquinone attenuates myocardial ischemia/reperfusion injury through activation of SIRT1 signaling. Cell Physiol Biochem 2018; 47:1193-1206.
14.    Majdalawieh AF, Fayyad MW. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. Int Immunopharmacol 2015; 28:295-304.
15.    Asgharzadeh F, Bargi R, Beheshti F, Hosseini M, Farzadnia M, Khazaei M. Thymoquinone prevents myocardial and perivascular fibrosis induced by chronic lipopolysaccharide exposure in male rats: - thymoquinone and cardiac fibrosis. J Pharmacopunct 2018; 21:284-293.
16.    Oskouei Z, Akaberi M, Hosseinzadeh H. A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: a review. Iran J Basic Med Sci 2018; 21:1200-1209.
17.    Bamosa AO, Ali BA, al-Hawsawi ZA. The effect of thymoquinone on blood lipids in rats. Indian J Physiol Pharmacol 2002; 46:195-201.
18.    Xu J, Zhu L, Liu H, Li M, Liu Y, Yang F, et al. Thymoquinone reduces cardiac damage caused by hypercholesterolemia in apolipoprotein E-deficient mice. Lipids Health Dis 2018; 17:173-182.
19.    Sezen Ş C, Kucuk A, Özer A, Kılıç Y, Mardin B, Alkan M, et al. Assessment of the effects of levosimendan and thymoquinone on lung injury after myocardial ischemia reperfusion in rats. Drug Des Devel Ther 2018; 12:1347-1352.
20.    Gulsen I, Ak H, Colcimen N, Alp HH, Akyol ME, Demir I, et al. Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury. World Neurosurg 2016; 86:243-249.
21.    Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol 2016; 4:537-547.
22.    Yamagishi SI, Nakamura N, Matsui T. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. J Diabetes 2017; 9:141-148.
23.    Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword?. J Clin Invest 1985; 76:1713-1719.
24.    Hu L, Wang J, Zhu H, Wu X, Zhou L, Song Y, et al. Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria. Cell Death Dis 2016; 7:2222-2234.
25.    Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol 2005; 288:1900-1908.
26.    Gupta B, Ghosh KK, Gupta RC. Chapter 39 - Thymoquinone. In: Gupta RC, editor. Nutraceuticals. Boston: Academic Press; 2016. p.541-550.
27.    Lee YM, Cheng PY, Chen SY, Chung MT, Sheu JR. Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J Cardiovasc Pharmacol 2011; 58:133-142.
28.    Badalzadeh R, Yousefi B, Tajaddini A, Ahmadian N. Diosgenin-induced protection against myocardial ischaemia-reperfusion injury is mediated by mitochondrial KATP channels in a rat model. Perfusion 2015; 30:565-571.
29.    Gonca E, Kurt Ç. Cardioprotective effect of thymoquinone: A constituent of Nigella sativa L., against myocardial ischemia/reperfusion injury and ventricular arrhythmias in anaesthetized rats. Pak J Pharm Sci 2015; 28:1267-1273.
30.    Xiao J, Ke ZP, Shi Y, Zeng Q, Cao Z. The cardioprotective effect of thymoquinone on ischemia‐reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. J Cell Biochem 2018; 119:7212-7217.
31.    Liu H, Liu HY, Jiang YN, Li N. Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Mol Med Rep 2016; 13:2836-2842.
32.    Liu S, Wu N, Miao J, Huang Z, Li X, Jia P, et al. Protective effect of morin on myocardial ischemia‑reperfusion injury in rats. Int J Mol Med 2018; 42:1379-1390.
33.    Mokhtari B, Badalzadeh R, Alihemmati A, Mohammadi M. Phosphorylation of GSK-3beta and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium. Euro J Pharmacol 2015; 765:316-321.
34.    Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, et al. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 2005; 16:2424-2432.
35.    Marzilli M, Huqi A. Cardioprotective therapy in reperfusion injury: lessons from the european myocardial infarction project—free radicals (EMIP-FR). Heart Metab 2010; 46:35-37.
36.    Ebrahimi H, Badalzadeh R, Mohammadi M, Yousefi B. Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. J Physiol Biochem 2014; 70:425-432.
37.    Zhang WP, Zong QF, Gao Q, Yu Y, Gu XY, Wang Y, et al. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep 2016; 14:3992-3998.
38.    Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heartphosphorylated signal transducer and activator of transcription 3–and phosphatidylinositol 3-Kinase–mediated inhibition. Anesthesiology 2011; 114:1364-1372.
39.    Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 2006; 69:178-185.
40.    Fu H, Xu H, Chen H, Li Y, Li W, Zhu Q, et al. Inhibition of glycogen synthase kinase 3 ameliorates liver ischemia/reperfusion injury via an energy-dependent mitochondrial mechanism. J Hepatol 2014; 61:816-824.
41.    Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role of glycogen synthase kinase-3β in cardioprotection. Circ res 2009; 104:1240-1252.
42.    Badalzadeh R, Mohammadi M, Yousefi B, Farajnia S, Najafi M, Mohammadi S. Involvement of glycogen synthase kinase-3β and oxidation status in the loss of cardioprotection by postconditioning in chronic diabetic male rats. Adv Pharm Bull 2015; 5:321-327.