Adrenomedullin increases cAMP accumulation and BDNF expression in rat DRG and spinal motor neurons

Document Type : Original Article

Authors

1 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Objective(s): Adrenomedullin (AM) has high expression in the spinal cord. In this study, we investigated the expression of AM and its receptor components, including calcitonin receptor-like receptor (CLR) and receptor activity modifying proteins (RAMPs) in dorsal root ganglion (DRG) and spinal motor (SM) neurons. Furthermore, the effects of AM on cAMP/cAMP response element-binding protein (CREB), AKT/glycogen synthase kinase-3 beta (GSK-3β) signaling pathways, and expressions of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were evaluated.
Materials and Methods: Rat embryonic DRG and SM neurons were isolated, purified, and cultured. Real-time PCR was used to assess expressions of AM, CLR, and RAMPs. cAMP levels, p-CREB, BDNF, and NT-3 were determined using an enzyme-linked immunosorbent assay. p-AKT and p-GSK-3β levels were determined by western blotting. Real-time PCR showed expressions of AM, CLR, RAMP2, and RAMP3 in both DRG and SM neurons.
Results: AM increased cAMP accumulation and p-CREB levels in DRG and SM neurons. AM increased p-AKT and p-GSK-3β in DRG, but not SM neurons. AM significantly increased BDNF expression in both DRG and SM neurons. There was also an increase in NT-3 level in both DRG and SM neurons, which is statistically significant in SM neurons.
Conclusion: These results showed both DRG and SM neurons are targets of AM actions in the spinal cord. An increase in BDNF expression by AM in both DRG and SM neurons suggests the possible beneficial role of AM in protecting, survival, and regeneration of sensory and motor neurons.

Keywords


1. Geven C, Bergmann A, Kox M, Pickkers P. Vascular effects of adrenomedullin and the anti-adrenomedullin antibody adrecizumab in sepsis. Shock 2018;50:132-140.
2.    Hong Y, Liu Y, Chabot J-G, Fournier A, Quirion R. Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats. Pain 2009;146:105-113.
3.    Takhshid MA, Owji AA, Panjehshahin MR. In vitro effects of adrenomedullin and calcitonin gene related peptide on the release of serotonin and amino acids from rat dorsal spinal cord. Neurosci Lett 2007;420 :193-197.
4.    Hay D, Conner A, Howitt S, Takhshid M, Simms J, Mahmoud K, et al. The pharmacology of CGRP-responsive receptors in cultured and transfected cells. Peptides 2004;25:2019-2026.
5.    Hay DL, Garelja ML, Poyner DR, Walker CS. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review Br J Pharmacol 2018;175:3-17.
6.    Cottrell GS, Roosterman D, Marvizon JC, Song B, Wick E, Pikios S, et al. Localization of calcitonin receptor‐like receptor and receptor activity modifying protein 1 in enteric neurons, dorsal root ganglia, and the spinal cord of the rat. J Comp Neurol 2005;490:239-255.
7.    Marvizón JCG, Pérez OA, Song B, Chen W, Bunnett NW, Grady EF, et al. Calcitonin Receptor-Like Receptor and Receptor Activity Modifying Protein 1 in the rat dorsal horn: localization in glutamatergic presynaptic terminals containing opioids and adrenergic α2C receptors. Neuroscience 2007;148::250-265.
8.    Ma W, Chabot J-G, Quirion R. A role for adrenomedullin as a pain-related peptide in the rat. Proc Natl Acad Sci 2006;103:16027-16032.
9.    Zhao L, Jing Y, Qu L, Meng X, Cao Y, Tan H. Expression of adrenomedullin in rats after spinal cord injury and intervention effect of recombinant human erythropoietin. Exp Ther Med 2016;12:3680-3684.
10.    Sugimoto Y, Shiraishi S, Yasuda T, Hamada H, Kawamoto M. Intrathecal adrenomedullin modulates acute inflammatory pain in the rat formalin test. Neurosci Lett 2013;552:146-150.
11.    Hong Y, Wang D, Chabot J-G, Ma W, Chen P, Quirion R. A role for protein kinase C-dependent upregulation of adrenomedullin in the development of morphine tolerance in male rats. J Neurosci 2010;30:12508-12516.
12.    Li F-J, Zheng S-R, Wang D-M. Adrenomedullin: an important participant in neurological diseases.
Neural Regen Res 2020;15:1199-1207
13.    Takhshid MA, Poyner DR, Chabot JG, Fournier A, Ma W, Zheng WH, et al. Characterization and effects on cAMP accumulation of adrenomedullin and calcitonin gene‐related peptide (CGRP) receptors in dissociated rat spinal cord cell culture. Br J Pharmacol 2006;148:459-468.
14.    Yin H, Chao L, Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension 2004;43:109-116.
15.    Sikandar S, Minett MS, Millet Q, Santana-Varela S, Lau J, Wood JN, et al. Brain-derived neurotrophic factor derived from sensory neurons play    s a critical role in chronic pain. Brain 2018;141:1028-1039.
16.    Bäumer D, Talbot K, Turner MR. Advances in motor neurone disease. J R Soc Med 2014;107:14-21.
17.    Mrówczyński W. Health benefits of endurance training: implications of the brain-derived neurotrophic factor—a systematic review. Neural Plast 2019;1-13
18.    Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci 2017;18:548
19.    Santos D, Giudetti G, Micera S, Navarro X, Del Valle J. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo. Brain Res 2016;1636:93-106.
20.    Akyol O, Sherchan P, Yilmaz G, Reis C, Ho WM, Wang Y, et al. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model. Exp Neurol 2018;307:82-89.
21.    Xue W, Wang W, Gong T, Zhang H, Tao W, Xue L, et al. PKA-CREB-BDNF signaling regulated long lasting antidepressant activities of Yueju but not ketamine. Sci Repo 2016;6:1-9.
22.    Bender R, Lauterborn J, Gall C, Cariaga W, Baram T. Enhanced CREB phosphorylation in immature dentate gyrus granule cells precedes neurotrophin expression and indicates a specific role of CREB in granule cell differentiation. Eur J Neurosci 2001;13:679-686.
23.    Burkey TH, Hingtgen CM, Vasko MR. Isolation and culture of sensory neurons from the dorsal-root ganglia of embryonic or adult rats.  Methods Mol Med 2004;99:189-202.
24.    Beaudet MJ, Yang Q, Cadau S, Blais M, Bellenfant S, Gros-Louis F, et al. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Sci Rep 2015;5:1-12
25.    Wang W, Qi B, Lv H, Wu F, Liu L, Wang W, et al. A new method of isolating spinal motor neurons from fetal mouse. J Neurosci Methods 2017;288:57-61.
26.    Liu R, Lin G, Xu H. An efficient method for dorsal root ganglia neurons purification with a one-time anti-mitotic reagent treatment. PLoS One 2013;8:e60558.
27.    Khoshdel Z, Takhshid MA, Owji AA. Effects of intrathecal amylin on formalin-induced nociception and on cAMP accumulation in the rat embryonic spinal cells. Neuropeptides 2016;57:95-100.
28.    Alizadeh J, Glogowska A, Thliveris J, Kalantari F, Shojaei S, Hombach-Klonisch S, et al. Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim Biophys Acta Mol Cell Res 2018;1865:749-768.
29.    Lausson S, Cressent M. Signal transduction pathways mediating the effect of adrenomedullin on osteoblast survival. J Cell Biochem 2011;112:3807-3815.
30.    Ittner LM, Schwerdtfeger K, Kunz TH, Muff R, Husmann K, Grimm C, et al. Transgenic mice with ocular overexpression of an adrenomedullin receptor reflect human acute angle-closure glaucoma. Clin sci 2008;114:49-58.
31.    Yen DH, Chen L-C, Shen Y-C, Chiu Y-C, Ho I-C, Lou Y-J, et al. Protein kinase A-dependent neuronal nitric oxide synthase activation mediates the enhancement of baroreflex response by adrenomedullin in the nucleus tractus solitarii of rats. J Biomed Sci 2011;18:1-9.
32.    Wang D, Zeng J, Li Q, Huang J, Couture R, Hong Y. Contribution of adrenomedullin to the switch of G protein‐coupled μ‐opioid receptors from Gi to Gs in the spinal dorsal horn following chronic morphine exposure in rats.  Bri J pharmacol 2016;173:1196-1207.
33.    Hong Y, Hay DL, Quirion R, Poyner DR. The pharmacology of adrenomedullin 2/intermedin. Bri J pharmacol 2012;166:110-120.
34.    Si H, Zhang Y, Song Y, Li L. Overexpression of adrenomedullin protects mesenchymal stem cells against hypoxia and serum deprivation‑induced apoptosis via the Akt/GSK3β and Bcl‑2 signaling pathways. Int J Mol Med 2018;41:3342-3352.
35.    Zhou P-H, Hu W, Zhang X-B, Wang W, Zhang L-J. Protective effect of adrenomedullin on rat Leydig cells from lipopolysaccharide-induced inflammation and apoptosis via the PI3K/Akt signaling pathway ADM on rat Leydig cells from inflammation and apoptosis. Mediators Inflamm 2016;2016: 7201549.
36.    Kim W, Moon S-O, Sung MJ, Kim SH, Lee S, Kim HJ, et al. Protective effect of adrenomedullin in mannitol-induced apoptosis. Apoptosis 2002;7:527-536.
37.    Yudushkin I. Control of Akt activity and substrate phosphorylation in cells. IUBMB life. 2020.
38.    Mazzardo-Martins L, Martins DF, Stramosk J, Cidral-Filho FJ, Santos AR. Glycogen synthase kinase 3-specific inhibitor AR-A014418 decreases neuropathic pain in mice: evidence for the mechanisms of action. Neuroscience 2012;226:411-420.
39.    Martins DF, Rosa AO, Gadotti VM, Mazzardo-Martins L, Nascimento FP, Egea J, et al. The antinociceptive effects of AR-A014418, a selective inhibitor of glycogen synthase kinase-3 beta, in mice. J Pain 2011;12:315-322.
40.    Mahmoodazdeh A, Shafiee SM, Sisakht M, Khoshdel Z, Takhshid MA. Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress. Iran J Basic Med Sci 2020;23:1197-1206.
41.    Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al. Glycogen synthase kinase-3 beta (GSK-3β) signaling: implications for Parkinson’s disease. Pharmacol Res 2015;97:16-26.
42.    Azoulay-Alfaguter I, Elya R, Avrahami L, Katz A, Eldar-Finkelman H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene 2015;34:4613.
43.    Kumamoto K, Iguchi T, Ishida R, Uemura T, Sato M, Hirotsune S. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning. Biol Open 2017;6:1041-1055.
44.    Rao F, Yuan Z, Zhang D, Yu F, Li M, Li D, et al. Small-molecule SB216763-loaded microspheres repair peripheral nerve injury in small gap tubulization. Front Neurosci 2019;13:1-10
45.    Rowse AL, Naves R, Cashman KS, McGuire DJ, Mbana T, Raman C, et al. Lithium controls central nervous system autoimmunity through modulation of IFN-gamma signaling.
PLoS One 2012;7:e52658.
46.    Xia CF, Yin H, Borlongan CV, Chao J, Chao L. Adrenomedullin gene delivery protects against cerebral ischemic injury by promoting astrocyte migration and survival. Hum Gene Ther 2004;15:1243-1254.
47.    Fang H, Liu C, Yang M, Li H, Zhang F, Zhang W, et al. Neurotrophic factor and Trk signaling mechanisms underlying the promotion of motor recovery after acute spinal cord injury in rats. Exp Ther Med 2017;14:652-656.
48.    Wang X-y, Gu P-y, Chen S-w, Gao W-w, Tian H-l, Lu X-h, et al. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia. Neural Regen Res 2015;10:1865.
49.    Bai H, Zhao L, Liu H, Guo H, Guo W, Zheng L, et al. Adiponectin confers neuroprotection against cerebral ischemia-reperfusion injury through activating the cAMP/PKA-CREB-BDNF signaling. Brain Res Bull 2018;143:145-154.
50.    Hu E, Du H, Zhu X, Wang L, Shang S, Wu X, et al. Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply. Neuroscience 2018;386:315-325.
51.    Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener 2016;11:1-16.
52.    Boyce VS, Mendell LM. Neurotrophins and spinal circuit function. Front Neural Circuits 2014;8:1-7.