Expression of SR-B1 receptor in breast cancer cell lines, MDA-MB-468 and MCF-7: Effect on cell proliferation and apoptosis

Document Type : Original Article


Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran


Objective(s): High-density lipoprotein (HDL) is necessary for proliferation of several cells. The growth of many kinds of cells, such as breast cancer cells (BCC) is motivated by HDL. Cellular uptake of cholesterol from HDL which increases cell growth is facilitated by scavenger receptors of the B class (SR-BI). The proliferative effect of HDL might be mediated by this receptor. It is also believed that HDL has an anti-apoptotic effect on various cell types and promotes cell growth. This study was designed to investigate SR-BI expression, proliferation and apoptotic effect of HDL on human BCC lines, MCF-7 and MDA-MB-468.
Materials and Methods: Real-time-PCR method was used to evaluate expression of SR-BI, and cholesterol concentration was measured using a cholesterol assay kits (Pars AZ moon, Karaj, Iran). Cell viability was assessed using the MTT test. To identify cell apoptosis, the annexin V-FITC staining test and caspase-9 activity assay were applied.
Results: Treatment of both cell lines (MCF-7, MDA-MB-468) with HDL results in augmentation of SR-BI mRNA expression and also elevation of the intracellular cholesterol (p <0.01). HDL induced cell proliferation, cell cycle progression, and prevented activation of caspase-9 (p <0.05). We also demonstrated that inhibition of SR-B1 by BLT-1 could reduce cell proliferation, and induction of SR-B1 receptor by quercetin increased HDL-induced proliferation in both cell lines (p <0.05).
Conclusion: It can be concluded that alteration in HDL levels by SR-B1 activator (Quercetin) or inhibitor (BLT-1) may affect BCC growth and apoptosis induction.


1. Saha S, Singh BK, Singh K, Khanna R, Meena RN. Analysis of serum level of 25-hydroxycholecalciferol, calcium and lipid profile in carcinoma breast. Int Surgery J. 2019;6:3204-3210
2. Martin SS, Blumenthal RS, Miller M. LDL cholesterol: the lower the better. Med Clin. 2012;96:13-26.
3. Gaard M, Tretli S, Urdal P. Risk of breast cancer in relation to blood lipids: a prospective study of 31,209 Norwegian women. Cancer Causes  Control. 1994;5:501-509.
4. Mady EA. Association between estradiol, estrogen receptors, total lipids, triglycerides, and cholesterol in patients with benign and malignant breast tumors. J Steroid Biochem Mol Biol. 2000;75:323-328.
5. Bani I, Williams CM, Boulter P, Dickerson J. Plasma lipids and prolactin in patients with breast cancer. Br J Cancer. 1986;54:439-446.
6. Basu T, Williams D. Plasma and body lipids in patients with carcinoma of the breast. Oncology. 1975;31:172-176.
7. Alexopoulos C, Blatsios B, Avgerinos A. Serum lipids and lipoprotein disorders in cancer patients. Cancer. 1987;60:3065-3070.
8. Chang S-J, Hou M-F, Tsai S-M, Wu S-H, Hou LA, Ma H, et al. The association between lipid profiles and breast cancer among Taiwanese women. 2007;45:1219-1223.
9. Gerber M, Cavallo F, Marubini E, Richardson S, Barbieri A, Capitelli E, et al. Liposoluble vitamins and lipid parameters in breast cancer. A joint study in northern Italy and southern France. Int J Cancer. 1988;42:489-494.
10. Kökoǧlu E, Karaarslan I, Karaarslan HM, Baloǧlu H. Alterations of serum lipids and lipoproteins in breast cancer. Cancer lett. 1994;82:175-178.
11. Goodwin PJ, Boyd NF, Hanna W, Hartwick W, Murray D, Qizilbash A, et al. Elevated levels of plasma triglycerides are associated with histologically defined piemenopausal breast cancer risk.Nutr Cancer. 1997;27:282-292.
12. Rössner S, Wallgren A. Serum lipoproteins and proteins after breast cancer surgery and effects of tamoxifen. Atherosclerosis. 1984;52:339-346.
13. Cao WM, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, et al. A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Res. 2004;64:1515-1521.
14. Murao K, Imachi H, Cao W, Yu X, Li J, Yoshida K, et al. High-density lipoprotein is a potential growth factor for adrenocortical cells. Biochem Biophys Res Commun. 2006;344:226-232.
15. Al-Jarallah A, Chen X, González L, Trigatti BL. High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B, type I, PDZK1 and Akt1 and is blocked by sphingosine 1 phosphate receptor antagonists. PLoS ONE. 2014;9:e106487.
16. Gao M, Zhao D, Schouteden S, Sorci-Thomas MG, Van Veldhoven PP, Eggermont K, et al. Regulation of high-density lipoprotein on hematopoietic stem/progenitor cells in atherosclerosis requires scavenger receptor type BI expression. Arteriosclerosis Thromb Vas Biol.2014;34:1900-1909.
17. Brian J, Jacques genest. High-density lipoproteins and endothelial function. Circulation. 2001; 104:1978-1983.
18. Nofer J-R, Assmann G. Atheroprotective effects of high-density lipoprotein-associated lysosphingolipids. Trends cardiovasc Med. 2005;15:265-271.
19. Guo C, Luttrell LM, Price DT. Mitogenic signaling in androgen sensitive and insensitive prostate cancer cell lines. J Urol. 2000;163:1027-1032.
20. Kane LP, Mollenauer MN, Xu Z, Turck CW, Weiss A. Akt-dependent phosphorylation specifically regulates Cot induction of NF-κB-dependent transcription. Mol Cell Biol. 2002;22:5962-5974.
21. Grewal T, de Diego I, Kirchhoff MF, Tebar F, Heeren J, Rinninger F, et al. High density lipoprotein-induced signaling of the MAPK pathway involves scavenger receptor type BI-mediated activation of Ras. J Biol Chem. 2003;278:16478-16481.
22. Yuan B, Wu C, Wang X, Wang D, Liu H, Guo L, et al. High scavenger receptor class B type I expression is related to tumor aggressiveness and poor prognosis in breast cancer. Tumor Biol. 2016;37:3581-3588.
23. Mooberry LK, Nair M, Paranjape S, McConathy WJ, Lacko AG. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. J Drug Target. 2010;18:53-58.
24. Ren K, Jiang T, Zhao G-J. Quercetin induces the selective uptake of HDL-cholesterol via promoting SR-BI expression and the activation of the PPARγ/LXRα pathway. Food  funct. 2018;9:624-635.
25. Nieland TJ, Penman M, Dori L, Krieger M, Kirchhausen T. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci. 2002;99:15422-15427.
26. Yu M, Romer KA, Nieland TJ, Xu S, Saenz-Vash V, Penman M, et al. Exoplasmic cysteine Cys384 of the HDL receptor SR-BI is critical for its sensitivity to a small-molecule inhibitor and normal lipid transport activity. Proc Natl Acad Sci. 2011;108:12243-12248.
27. Danilo C, Gutierrez-Pajares JL, Mainieri MA, Mercier I, Lisanti MP, Frank PG. Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Res. 2013;15:1-13.
28. Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, et al. Role of cholesterol in the development and progression of breast cancer. Am J pathol. 2011;178:402-412.
29. Nofer J-R, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem. 2001;276:34480-34485.
30. Yang J-T, Li Z-L, Wu J-Y, Lu F-J, Chen C-H. An oxidative stress mechanism of shikonin in human glioma cells. PLoS ONE. 2014;9:e94180.
31. MacLellan DL, Steen H, Adam RM, Garlick M, Zurakowski D, Gygi SP, et al. A quantitative proteomic analysis of growth factor‐induced compositional changes in lipid rafts of human smooth muscle cells. Proteomics. 2005;5:4733-4742.
32. Zuchermann MJ, Ipsen JH, Mouritsen OG. Cholesterol in membrane models. CRC press; 1992:223-259.
33. Shahzad MM, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M, et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia. 2011;13:309-319.
34. Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, et al. Apolipoprotein AI (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci. 2010;107:19997-20002.
35. Witt W, Kolleck I, Fechner H, Sinha P, Rüstow B. Regulation by vitamin E of the scavenger receptor BI in rat liver and HepG2 cells. J lipid Res. 2000;41:2009-2016.
36. Suc I, Escargueil-Blanc I, Troly M, Salvayre R, Nègre-Salvayre A. HDL and apoA prevent cell death of endothelial cells induced by oxidized LDL. Arteriosclerosis Thromb Vas Biol. 1997;17:2158-2166.
37. Seetharam D, Mineo C, Gormley AK, Gibson LL, Vongpatanasin W, Chambliss KL, et al. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ Res. 2006;98:63-72.
38. Sekine Y, Demosky SJ, Stonik JA, Furuya Y, Koike H, Suzuki K, et al. High-density lipoprotein induces proliferation and migration of human prostate androgen–independent cancer cells by an ABCA1-dependent mechanism. Mol Cancer Res. 2010;8:1284-1294.
39. Martin G, Pilon A, Albert C, Vallé M, Hum DW, Fruchart JC, et al. Comparison of expression and regulation of the high‐density lipoprotein receptor SR‐BI and the low‐density lipoprotein receptor in human adrenocortical carcinoma NCI‐H295 cells. Eur J Biochem. 1999;261:481-491.
40. Exon JH, South EH, Taruscio TG, Clifton GD, Fariss MW. Chemopreventive effect of dietary d-α-tocopheryl succinate supplementation on precancer colon aberrant crypt formation and vitamin E analogue levels in young and old rats. Nutr Cancer. 2004;49:72-80.
41. Twiddy AL, Cox ME, Wasan KM. Knockdown of scavenger receptor class B type I reduces prostate specific antigen secretion and viability of prostate cancer cells. Prostate. 2012;72:955-965.
42. Gospodarowicz D, Lui G-M, Gonzalez R. High-density lipoproteins and the proliferation of human tumor cells maintained on extracellular matrix-coated dishes and exposed to defined medium. Cancer Res. 1982;42:3704-3713.
43. Michalides R. Cell cycle regulators: mechanisms and their role in aetiology, prognosis, and treatment of cancer. J Clin Pathol. 1999;52:555-568.
44. Nofer J-R, Junker R, Pulawski E, Fobker M, Levkau B, von Eckardstein A, et al. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway.J Thromb Haemost. 2001;85:730-735.
45. Nofer J-R. Signal transduction by HDL: agonists, receptors, and signaling cascades. High density Lipoproteins. 2015:229-256.
46. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. New Engl J Med. 2006;354:270-282.
47. Wakeling A, Newboult E, Peters S. Effects of antioestrogens on the proliferation of MCF-7 human breast cancer cells. J Mol Endocrinol. 1989;2:225-234.
48. George KS, Wu S. Lipid raft: A floating island of death or survival. Toxicol Appl Pharmacol. 2012;259:311-319.
49. Murai T. The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol. 2012;2012.
50. Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289:24020-24029.
51. Paillasse MR, de Medina P, Amouroux G, Mhamdi L, Poirot M, Silvente-Poirot S. Signaling through cholesterol esterification: a new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion. J lipid Res. 2009;50:2203-2211.
52. De medina P, Boubekeur N, Balaguer P, Favre G, Silvente-Poirot S, Poirot M. The prototypical inhibitor of cholesterol esterification, Sah 58-035 [3-[decyldimethylsilyl]-n-[2-(4-methylphenyl)-1-phenylethyl] propanamide], is an agonist of estrogen receptors. J Pharmacol Exp Ther. 2006;319:139-149.
53. De medina P, Genovese S, Paillasse MR, Mazaheri M, Caze-Subra S, Bystricky K, et al. Auraptene is an inhibitor of cholesterol esterification and a modulator of estrogen receptors. Mol Pharmacol. 2010;78:827-836.
54. Uda S, Accossu S, Spolitu S, Collu M, Angius F, Sanna F, et al. A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line. Tumor Biol. 2012;33:443-453.
55. Pan B, Ren H, He Y, Lv X, Ma Y, Li J, et al. HDL of patients with type 2 diabetes mellitus elevates the capability of promoting breast cancer metastasis. Clin Cancer Res. 2012;18:1246-1256.
56. Lu C-W, Lo Y-H, Chen C-H, Lin C-Y, Tsai C-H, Chen P-J, et al. VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis. Cancer lett. 2017;388:130-138.
57. Rotheneder M, Kostner GM. Effects of low‐and high‐density lipoproteins on the proliferation of human breast cancer cells In vitro: Differences between hormone‐dependent and hormone‐independent cell lines. Int J cancer. 1989;43:875-879.
58. Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Tjønneland A, et al. Metabolic syndrome, plasma lipid, lipoprotein and glucose levels, and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr-Relat cancer. 2007;14:755-767.
59. Jürgens G, Xu Q, Huber L, Böck G, Howanietz H, Wick G, et al. Promotion of lymphocyte growth by high density lipoproteins (HDL): physiological significance of the HDL binding site. J Biol Chem. 1989;264:8549-8556.
60. Xu J, Qian J, Xie X, Lin L, Ma J, Huang Z, et al. High density lipoprotein cholesterol promotes the proliferation of bone-derived mesenchymal stem cells via binding scavenger receptor-B type I and activation of PI3K/Akt, MAPK/ERK1/2 pathways. Mol Cell Biochem. 2012;371:55-64.