MKK4 variants rs3826392 and rs3809728 are associated with susceptibility and clinicopathological features in colorectal cancer patients

Document Type : Original Article

Authors

1 División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México

2 Unidad de Investigación Seguimiento Enfermedades Metabólicas, Unidad Médica de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco. México

3 División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México

4 Servicio de Oncología Médica, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México

5 Servicio de Gastroenterología, Hospital de Especialidades, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México

Abstract

Objective(s): The mitogen-activated protein kinase kinase 4 (MKK4) plays a key role in several processes like inflammation, apoptosis, and tumorigenesis. Several authors have proposed that genetic variations in these genes may alter their expression with subsequent cancer risk. This study aimed to examine the possible association of MKK4 rs3826392 and rs3809728 variants in Mexican patients with colorectal cancer (CRC). These variants were also compared with clinical features as sex, age, TNM stage, and tumor location.
Materials and Methods: The study included genomic DNA from 218 control subjects and 250 patients. Genotyping of the MKK4 variants was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) procedure.
Results: Individuals with A/T and T/T genotypes for the rs3809728 (-1044 A>T) variant showed a significantly increased risk for CRC (P=0.012 and 0.007, respectively); while individuals with the G/G genotype for the rs3826392 (-1304 T>G) variant showed a decreased risk for CRC (P=0.012). Genotypes of the MKK4 rs3809728 variant were also significantly related to colon localization and advanced TNM stage in CRC patients. T-T haplotype (rs3826392 and rs3809728) of the MKK4 gene was associated with risk in patients with CRC.
Conclusion: The rs3826392 variant in the MKK4 gene could be a cancer protective factor, while the rs3809728 variant could be a risk factor. These variants play a significant role in CRC risk.

Keywords


1. Globocan. Colorectal cancer. 2020. URL: https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-factsheet.pdf [Accesed: April 15, 2021].
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70: 7–30.
3. Globocan. Mexico. 2020. URL: http://gco.iarc.fr/today/data/factsheets/populations/484-mexico-fact-sheets.pdf [Accesed: April 15, 2021].
4. Carr PR, Weigl K, Edelmann D, Jansen L, Chang-Claude J, Brenner H, et al. Estimation of absolute risk of colorectal cancer based on healthy lifestyle, genetic  risk, and colonoscopy status in a population-based study. Gastroenterology 2020; 159: 129-138.
5. Ocvirk S, Wilson AS, Appolonia CN, Thomas TK, O’Keefe SJD. Fiber, fat, and colorectal cancer: New insight into modifiable dietary risk factors. Curr Gastroenterol Rep 2019; 21: 62.
6. Cho YA, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, et al. Genetic risk score, combined lifestyle factors and risk of colorectal cancer. Cancer Res Treat 2019; 51: 1033–1040.
7. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000  events. Cancer Epidemiol biomarkers Prev 2007;16:2533-2547.
8. Tsong WH, Koh WP, Yuan JM, Wang R, Sun CL, Yu MC. Cigarettes and alcohol in relation to colorectal cancer: the Singapore Chinese Health Study. Br J Cancer 2007; 96: 821–827.
9. Thanikachalam K, Khan G. Colorectal cancer and nutrition. Nutrients 2019; 11: 164.
10. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention  strategies. Nat Rev Gastroenterol Hepatol 2019; 16: 713–732.
11. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology 2020; 158: 322–340.
12. Shin A, Li H, Shu X-O, Yang G, Gao Y-T, Zheng W. Dietary intake of calcium, fiber and other micronutrients in relation to colorectal  cancer risk: Results from the Shanghai Women’s Health Study. Int J cancer 2006; 119: 2938–2942.
13. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007; 26: 3279–3290.
14. Guo Y-J, Pan W-W, Liu S-B, Shen Z-F, Xu Y, Hu L-L. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19: 1997–2007.
15. English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, et al. New insights into the control of MAP kinase pathways. Exp Cell Res 1999; 253: 255–270.
16. Dogan M, Guresci S, Acikgoz Y, Ergun Y, Kos FT, Bozdogan O, et al. Is there any correlation among MKK4 (mitogen-activated protein kinase kinase 4)  expression, clinicopathological features, and KRAS/NRAS mutation in colorectal cancer. Expert Rev Mol Diagn 2020; 20: 851–859.
17. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37–40.
18. Cunningham SC, Gallmeier E, Hucl T, Dezentje DA, Calhoun ES, Falco G, et al. Targeted deletion of MKK4 in cancer cells: a detrimental phenotype manifests as  decreased experimental metastasis and suggests a counterweight to the evolution of tumor-suppressor loss. Cancer Res 2006; 66: 5560–5564.
19. Diao D, Wang L, Zhang J-X, Chen D, Liu H, Wei Y, et al. Mitogen/extracellular signal-regulated kinase kinase-5 promoter region polymorphisms  affect the risk of sporadic colorectal cancer in a southern Chinese population. DNA Cell Biol 2012; 31: 342–349.
20. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.
21. Cuenda A. Mitogen-activated protein kinase kinase 4 (MKK4). Int J Biochem Cell Biol 2000; 32: 581–587.
22. Sutherland CL, Heath AW, Pelech SL, Young PR, Gold MR. Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases  by CD40 and the B cell antigen receptor. J Immunol 1996; 157: 3381–3390.
23. Teng DH, Perry WL 3rd, Hogan JK, Baumgard M, Bell R, Berry S, et al. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res 1997; 57: 4177–4182.
24. Liu B, Chen D, Yang L, Li Y, Ling X, Liu L, et al. A functional variant (-1304T>G) in the MKK4 promoter contributes to a decreased risk  of lung cancer by increasing the promoter activity. Carcinogenesis 2010; 31: 1405–1411.
25. Yoshida BA, Dubauskas Z, Chekmareva MA, Christiano TR, Stadler WM, Rinker-Schaeffer CW. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1  (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 1999; 59: 5483–5487.
26. Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A, et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor  gene in human ovarian carcinoma. Cancer Res 2002; 62: 6717–6723.
27. Nakayama K, Nakayama N, Davidson B, Katabuchi H, Kurman RJ, Velculescu VE, et al. Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol Ther 2006; 5: 630–634.
28. Wei Y, Wang L, Lan P, Zhao H, Pan Z, Huang J, et al. The association between -1304T>G polymorphism in the promoter of MKK4 gene and the  risk of sporadic colorectal cancer in southern Chinese population. Int J cancer 2009; 125: 1876–1883.
29. Burotto M, Chiou VL, Lee J-M, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer 2014; 120: 3446–3456.
30. Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal  kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem 1999; 274: 35247–35254.
31. Spillman MA, Lacy J, Murphy SK, Whitaker RS, Grace L, Teaberry V, et al. Regulation of the metastasis suppressor gene MKK4 in ovarian cancer. Gynecol Oncol 2007; 105: 312–320.
32. Robinson VL, Shalhav O, Otto K, Kawai T, Gorospe M, Rinker-Schaeffer CW. Mitogen-activated protein kinase kinase 4/c-Jun NH2-terminal kinase kinase 1 protein  expression is subject to translational regulation in prostate cancer cell lines. Mol Cancer Res 2008; 6: 501–508.
33. Bai R, Yuan C, Zhou F, Ni L, Gong Y, Xie C. Evaluation of the association between the -1304T>G polymorphism in the promoter of  the MKK4 gene and the risk of colorectal cancer: a PRISMA-compliant meta-analysis. Ann Transl Med 2019; 7: 144.
34. Jiang L, Zhou P, Sun A, Zheng J, Liu B, You Y, et al. Functional variant (-1304T>G) in the MKK4 promoter is associated with decreased risk  of acute myeloid leukemia in a southern Chinese population. Cancer Sci 2011; 102: 1462–1468.
35. Hu M, Zheng J, Zhang L, Jiang L, You Y, Jiang M, et al. The association between -1304T>G polymorphism in the promoter of mitogen-activated  protein kinase kinase 4 gene and the risk of cervical cancer in Chinese population. DNA Cell Biol 2012; 31: 1167–1173.
36. Iqbal B, Masood A, Lone MM, Lone AR, Dar NA. Polymorphism of metastasis suppressor genes MKK4 and NME1 in Kashmiri patients with  breast cancer. Breast J 2016; 22: 673–677.
37. Zheng J, Liu B, Zhang L, Jiang L, Huang B, You Y, et al. The protective role of polymorphism MKK4-1304 T>G in nasopharyngeal carcinoma is  modulated by Epstein-Barr virus’ infection status. Int J cancer 2012; 130: 1981–1990.
38. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.
39. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin 2014; 64: 104–117.
40. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in  GLOBOCAN 2012. Int J cancer 2015; 136: 359-386.
41. Alberts, SR Citrin, D Schwartz, D Rodriguez M. Colon, Rectal, and Anal Cancers. Cancer Management. 2016. URL:
https://www.cancernetwork.com/cancer-management/colon-rectal-and-anal-cancers [Accesed: April 15, 2021].
42. Su GH, Hilgers W, Shekher MC, Tang DJ, Yeo CJ, Hruban RH, et al. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a  genetically targeted tumor suppressor gene. Cancer Res 1998; 58: 2339–2342.
43. Wang L, Pan Y, Dai J Le. Evidence of MKK4 pro-oncogenic activity in breast and pancreatic tumors. Oncogene 2004; 23: 5978–5985.
44. Cunningham SC, Kamangar F, Kim MP, Hammoud S, Haque R, Iacobuzio-Donahue C, et al. MKK4 status predicts survival after resection of gastric adenocarcinoma. Arch Surg 2006; 141: 1095–1099.
45. Gupta A, Wang Y, Browne C, Kim S, Case T, Paul M, et al. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics  endocrine differentiation of pancreatic beta cells. Prostate 2008; 68: 50–60.
46. Riemenschneider MJ, Koy TH, Reifenberger G. Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic  gliomas. Acta Neuropathol 2004; 107: 277–282.
47. Seike M, Gemma A, Hosoya Y, Hosomi Y, Okano T, Kurimoto F, et al. The promoter region of the human BUBR1 gene and its expression analysis in lung  cancer. Lung Cancer 2002; 38: 229–234.
48. Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR, et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in  Ewing’s sarcoma. Cancer Cell 2006; 9: 405–416.
49. Heald RJ, Moran BJ. Embryology and anatomy of the rectum. Semin Surg Oncol 1998; 15: 66–71.
50. Iacopetta B. Are there two sides to colorectal cancer? Int J cancer 2002; 101: 403–408.
51. Li F, Lai M. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B 2009; 10: 219–229.
52. Sanz-Pamplona R, Cordero D, Berenguer A, Lejbkowicz F, Rennert H, Salazar R, et al. Gene expression differences between colon and rectum tumors. Clin cancer Res  an Off J Am Assoc  Cancer Res 2011; 17: 7303–7312.
53. Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B, Wolff RK. MicroRNAs and colon and rectal cancer: differential expression by tumor location  and subtype. Genes Chromosomes Cancer 2011; 50: 196–206.
54. Paschke S, Jafarov S, Staib L, Kreuser ED, Maulbecker Armstrong C, Roitman M, et al. Are colon and rectal cancer two different tumor entities? A proposal to abandon the term colorectal cancer. Int J Mol Sci 2018; 19:2577.
55. Tamas K, Walenkamp AME, de Vries EGE, van Vugt MATM, Beets Tan RG, van Etten B, et al. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat Rev 2015; 41: 671–679.
56. Rosales-Reynoso MA, Zepeda-López P, Saucedo-Sariñana AM, Pineda-Razo TD, Barros-Núñez P, Gallegos-Arreola MP, et al. GSK3β polymorphisms are associated with tumor site and TNM stage in colorectal  cancer. Arch Iran Med 2019; 22: 453–460.
57. Rosales-Reynoso MA, Saucedo-Sariñana AM, Contreras-Díaz KB, Márquez-González RM, Barros-Núñez P, Pineda-Razo TD, et al. Genetic polymorphisms in APC, DVL2, and AXIN1 are associated with susceptibility,  advanced TNM stage or tumor location in colorectal cancer. Tohoku J Exp Med 2019; 249: 173–183.